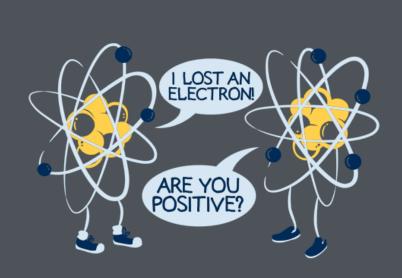
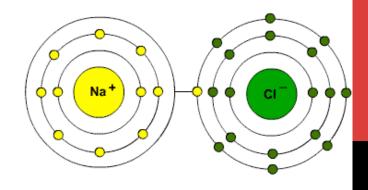

CHAPTER 6 & 7




Two atoms are walking down the street. Says one atom to the other, "hey, I think I lost an electron!"

The other says, "Are you sure?"

"Yes, I'm positive!"

WARM UP

Briefly explain the following:

<u>1. IONS</u>:

positively or negatively charged atoms.

2. Valence e-

- Found in outermost shell
- Determine chemical properties
- Group # = # of valence e-
- e- dot structures show symbol + valence e-

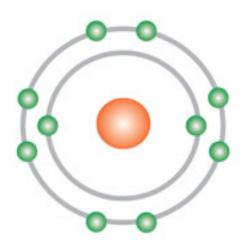
3. Lewis Dot Structure:

Shows number of valence e-

REVIEW CONTINUED: LEWIS' OCTET RULE

8 is the magic #...The GOAL!!

Metals tend to lose their valence e-


Non-metals tend to gain e- or share e-

Goal is to reach a complete Octet

In forming compounds, atoms tend to achieve the e- configuration of a <u>noble gas</u> (that is to say, STABLE!)

Na⁺ion

THE COOL KIDS...

Every element wants to be like the noble gases.

This will be important this chapter.

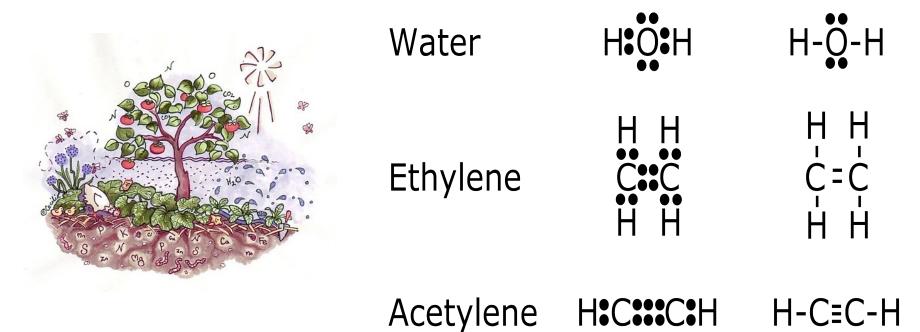
FORMING IONS

Cation is a + charged ion; lost e-

Anion is – charged ion; gain e-

Names between atoms and ions are the <u>same</u>.

Properties are VERY different


Atoms are <u>reactive</u>; ions are <u>stable</u> (like a noble gas)

Oxidation number = charge of the ion Na's oxidation number is +1 Oxygen's oxidation number is -2

CHEMICAL BONDING

Formed when two or more atoms chemically join together

- the resulting compound is unique both chemically and physically from it's parent atoms.
- This allows for the diversity of the universe!

COMPOUNDS VS. ELEMENTS

Once bonded, the compound has VERY <u>different properties</u> than the individual elements.

= NaCl = Salt

Na, sodium

CI, chlorine

COVALENT VS. IONIC BONDS

VS

Share electrons

Transfer electrons

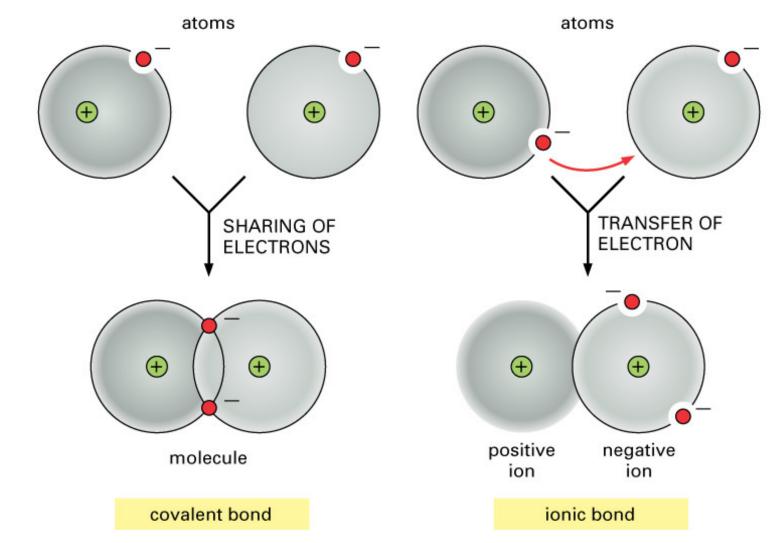
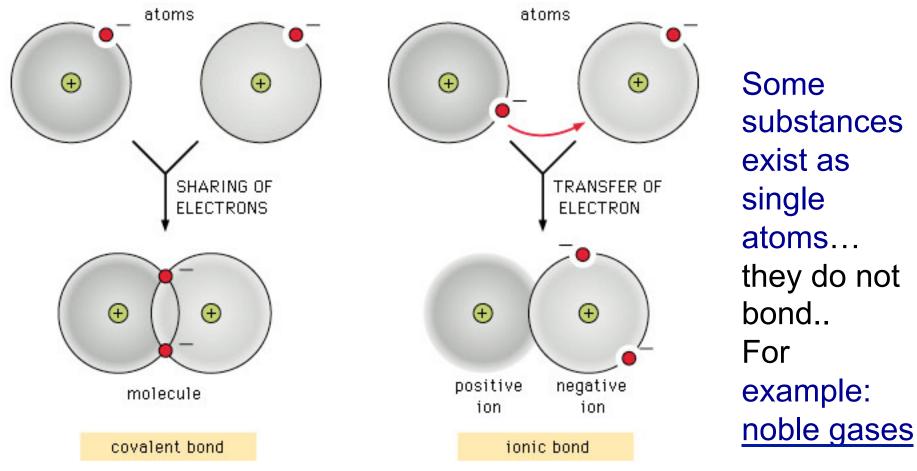
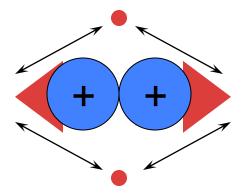



Figure 2.6 Essential Cell Biology, 2/e. (© 2004 Garland Science)

CHEMICAL BONDING

We know that atoms can join together to form molecules. But what joins the atoms to each other in a molecule? What is the "glue" that holds the molecule together?

©1998 GARLAND PUBLISHING

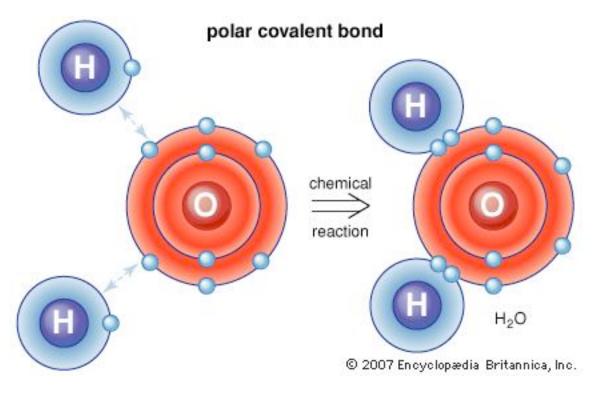

Electrons!

HOW DOES H₂ FORM?

The nuclei repel

But they are attracted to electrons

They share the electrons



COVALENT BONDS:

a sharing of electrons between two atoms

- Usually between 2 nonmetals

 rather that an attraction of opposite electrical charges, it's more like a "tug-of-war" or fight (vs. a "glue")

Looking at the word: Co = being with or together

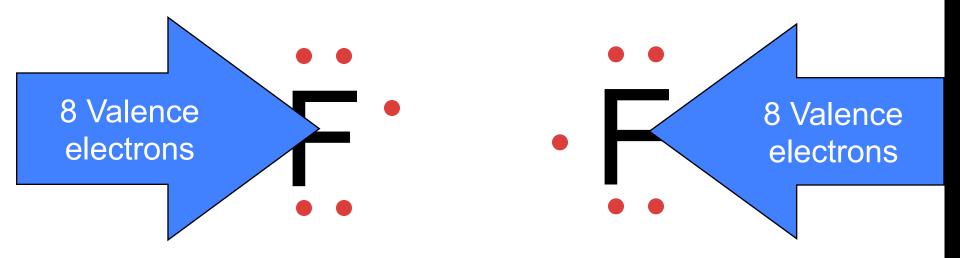
> Valere = Latin, meaning very strong

COVALENT BONDS

Nonmetals hold onto their valence electrons.

They can't give away electrons to bond. ...eight valence electrons (stable octet) Still want noble gas configuration.

Get it by sharing valence electrons with each other.


By sharing both atoms get to count the electrons toward noble gas configuration.

COVALENT BONDING

Fluorine has seven valence electrons

A second atom also has seven

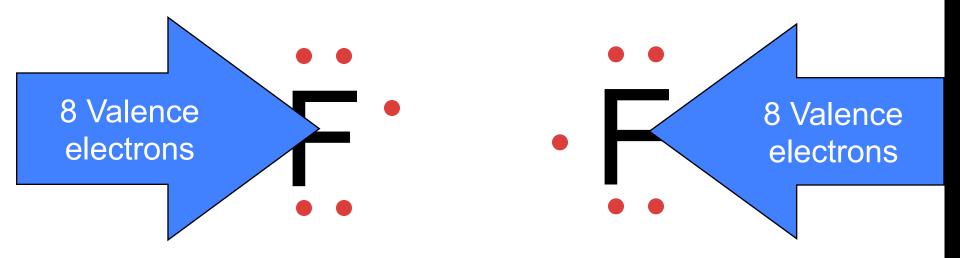
By sharing electrons ...both end with full orbitals

COVALENT BONDS

Nonmetals hold onto their valence electrons.

They can't give away electrons to bond. ...eight valence electrons (stable octet) Still want noble gas configuration.

Get it by sharing valence electrons with each other.


By sharing both atoms get to count the electrons toward noble gas configuration.

COVALENT BONDING

Fluorine has seven valence electrons

A second atom also has seven

By sharing electrons ...both end with full orbitals

SINGLE COVALENT BOND

A sharing of two valence electrons.

Only nonmetals and Hydrogen.

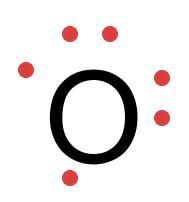
Different from an ionic bond because they actually form molecules.

Two specific atoms are joined.

In an ionic solid you can't tell which atom the electrons moved from or to.

HOW TO SHOW HOW THEY FORMED

It's like a jigsaw puzzle.

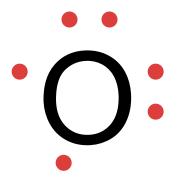

I have to tell you what the final formula is.

You put the pieces together to end up with the right formula.

For example- show how water is formed with covalent bonds.

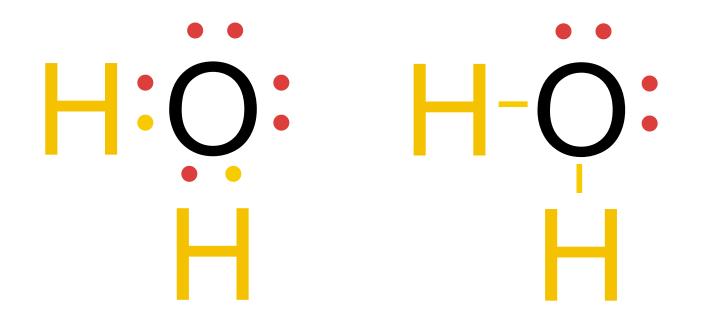
WATER Each hydrogen has 1 valence electron

- Each hydrogen wants 1 more
 The oxygen has 6 valence electrons
 The oxygen wants 2 more
 - They share to make each other happy



Put the pieces together

Н.


The first hydrogen is happy

The oxygen still wants one more

The second hydrogen attaches Every atom has full energy levels A pair of electrons is a single bond

LEWIS STRUCTURES

- 1) Count up total number of valence electrons
- 2) Connect all atoms with single bonds
 - "multiple" atoms usually on outside
 - "single" atoms usually in center;

C always in center,

H always on outside.

- 3) Complete octets on exterior atoms (not H, though)
- 4) Check
 - valence electrons math with Step 1
 - all atoms (except H) have an octet; if not, try multiple bonds
 - any extra electrons? Put on central atom

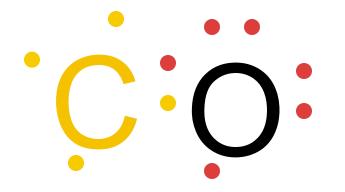
MULTIPLE BONDS

- Sometimes atoms share more than one pair of valence electrons.
- A double bond is when atoms share two pair (4) of electrons.
- A triple bond is when atoms share three pair (6) of electrons.

CARBON DIOXIDE

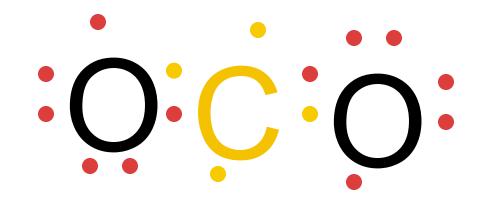
CO₂ = Carbon is central atom (I have to tell you)

Carbon has 4 valence electrons

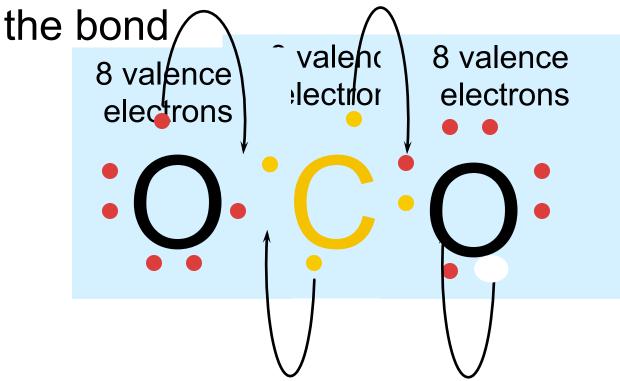

Wants 4 more

Oxygen has 6 valence electrons

Wants 2 more


CARBON DIOXIDE

Attaching 1 oxygen leaves the oxygen 1 short and the carbon 3 short


Carbon dioxide

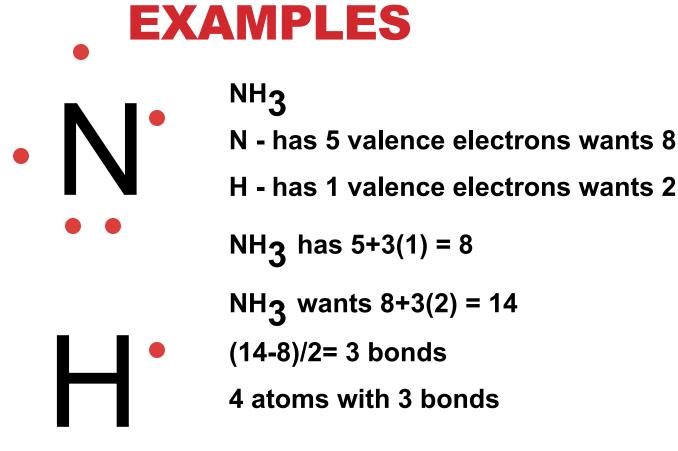
 Attaching the second oxygen leaves both oxygen 1 short and the carbon 2 short

Carbon dioxide

- The only solution is to share more
- Requires two double bonds
- Each atom gets to count all the atoms in

HOW TO DRAW THEM

Add up all the valence electrons.

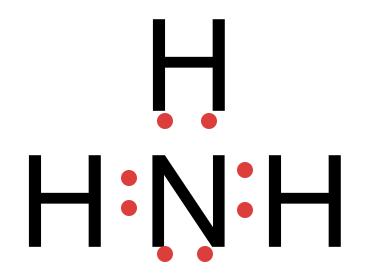

Count up the total number of electrons to make all atoms happy.

Subtract.

Divide by 2

Tells you how many bonds - draw them.

Fill in the rest of the valence electrons to fill atoms up.



Draw in the bonds

All 8 electrons are accounted for

Everything is full

HCN C is central atom

N - has 5 valence electrons wants 8

C - has 4 valence electrons wants 8

H - has 1 valence electrons wants 2

HCN has 5+4+1 = 10

HCN wants 8+8+2 = 18

(18-10)/2 = 4 bonds

3 atoms with 4 bonds -will require multiple bonds - not to H

Put in single bonds

Need 2 more bonds

Must go between C and N

H:C:N

HCN

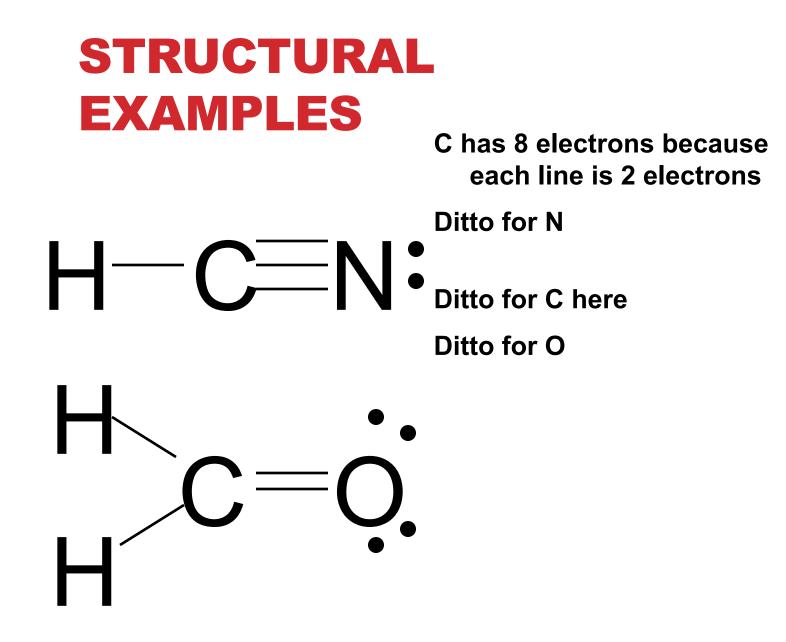
- Put in single bonds
- Need 2 more bonds
- Must go between C and N
- Uses 8 electrons 2 more to add

HC

HCN

- Put in single bonds
- Need 2 more bonds
- Must go between C and N
- Uses 8 electrons 2 more to add
- Must go on N to fill octet

HC···N·

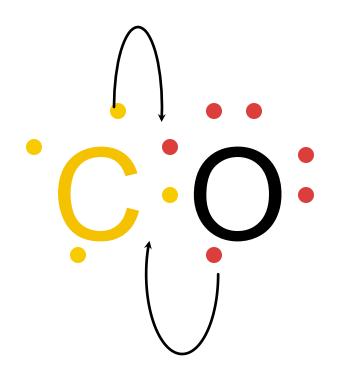

ANOTHER WAY OF INDICATING BONDS

Often use a line to indicate a bond

Called a structural formula

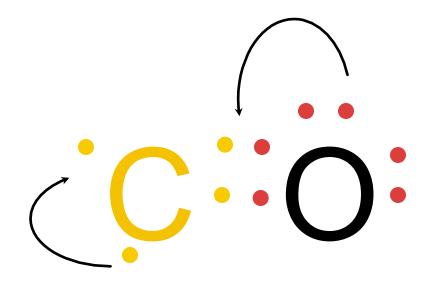
Each line is 2 valence electrons

H O H = H - O - H



COORDINATE COVALENT BOND

When one atom donates both electrons in a covalent bond.


Carbon monoxide

CO

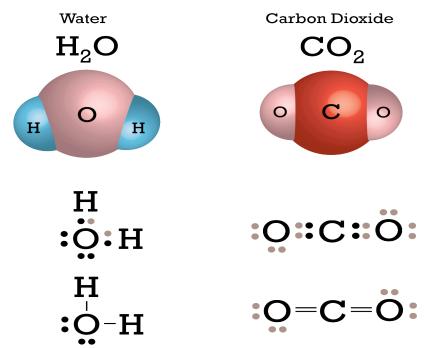
Coordinate Covalent Bond

- When one atom donates both electrons in a covalent bond.
- Carbon monoxide
- CO

Coordinate Covalent Bond

- When one atom donates both electrons in a covalent bond.
- Carbon monoxide
- CO

HOW DO WE KNOW IF


Have to draw the diagram and see what happens. Often happens with polyatomic ions and acids.

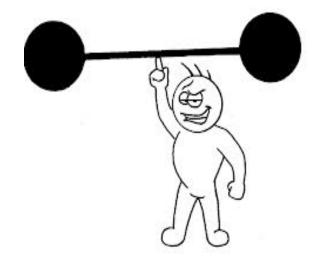
COVALENT BONDS (CONTINUED)

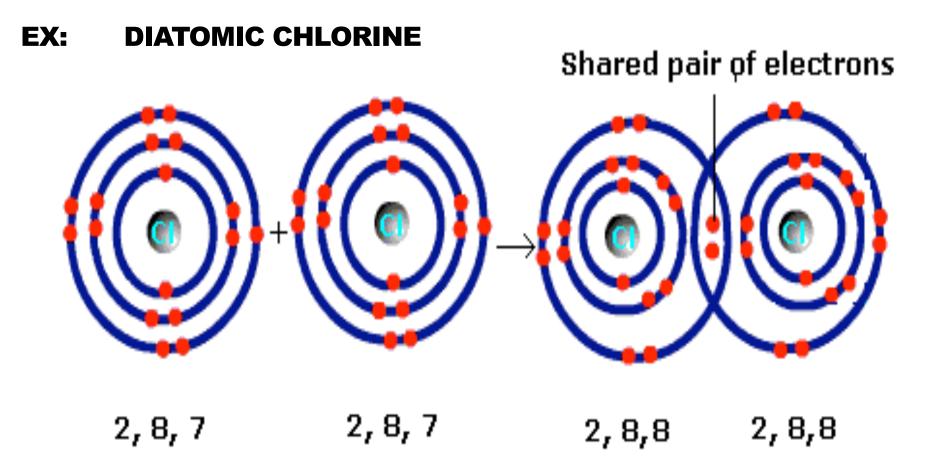
So in covalent bonds, there are going to be two electrons that share with one other to form a very strong bond.

For example: water, CO₂

Molecule: smallest unit of a covalent compound is a ex: H₂O, CO₂

Molecular formulas: show how many atoms of each element a molecule contains.


- Ex: H_2O CO_2 $C_6H_{12}O_6$
- Covalent molecules can consist of <u>more</u> than <u>2</u> elements.
- Not always written in lowest <u>whole #</u> ratio
 - For example: <u>C₂H₆</u>


Diatomic molecules: non-metals that exist in nature as molecules covalently bonded to themselves

There are 7 key ones, they are:

each oxygen has 8 electrons • H_2 , CI_2 , Br_2 , F_2 , I_2 , N_2 , O_2 in the valence shell

Their names are the same as their element name.

A molecular formula does <u>NOT</u> tell you about the <u>structure</u> of the molecule. Cl_2 or $C_6H_{12}O_6$

• Will not tell the arrangement of the atoms or who is bonded to whom (especially in the case of 3 or more elements)

WRITING AND NAMING COVALENT COMPOUNDS

Prefixes:

- **1 = mono 6 = hexa**
- **2 = di 7 = hepta**
- 3 = tri 8 = octa
- 4 = tetra 9 = nona
- **5 = penta 10 = deca**
- Prefix must go on <u>both</u> elements UNLESS the 1st one is a mono-
- 2nd element will end in <u>-ide</u>
 - CO_2 carbon dioxide (not monocarbon dioxide)
 - P₄S₃ <u>Tetraphosphorus tri</u>sulfide

You need not worry about charges or crisscrossing tricks!

WRITING AND NAMING (CONTINUED)

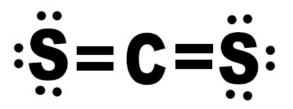
- Prefix must go on <u>both</u> elements UNLESS the 1st one is a mono-
- 2nd element will end in <u>-ide</u>
 - CO₂ carbon dioxide (not monocarbon dioxide)
 - P₄S₃ <u>Tetraphosphorus tri</u>sulfide
- ex: CO
 - Carbon monoxide
 - CF_4
 - Carbon tetrafluoride
 - P₃Br₅
 - <u>Triphosphorus</u>
 <u>pentabromide</u>

 SO_3

• Sulfur trioxide

SiO₂

<u>Silicon dioxide</u>


 SF_6

<u>Sulfur hexafluoride</u>

Generally, elements are listed in the same left-to-right order that they have on the periodic table.

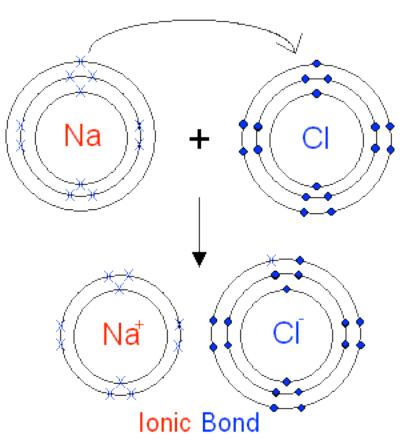
EXAMPLES: WRITE THE FORMULA

- 1. Nitrogen triodide
 - NI₃
- 2. Carbon disulfide
 - CS₂
- 3. Phosphorus pentachloride
 - PCl₅
- 4. Diboron hexahydride
 - B₂H₆

- F₂ = fluorine gas
- $H_2O = water$

SOME JUST HAVE SPECIAL NAMES

- $\mathbf{C}_{12}\mathbf{H}_{22}\mathbf{O}_{11} = \underline{\mathbf{sucrose}}$
- H_2O_2 = hydrogen <u>peroxide</u>
- NH₃ = ammonia
- CH₄ = methane
- CH₃OH = methanol



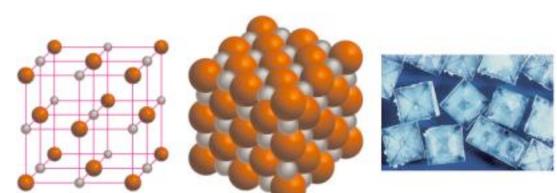
IONIC BONDS:

one or more e- is transferred to another element, causing an attraction between a <u>metal cation</u> to a <u>non-metal anion</u>.

Once combined the compound is electrically neutral

Charges must add up to <u>**zero**</u> Na⁺ Cl⁻ = 0

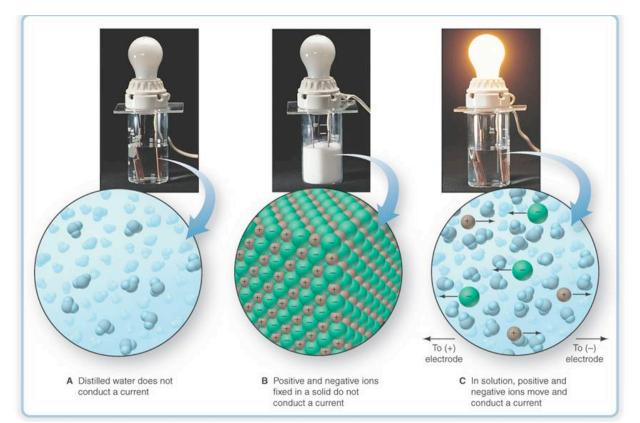
Will the following elements form IONIC COMPOUNDS?? Why or why not??


Li₂O

- 1. K and I Yes
- 2. Na and F Yes
- 3. K and Ca No
- 4. N and O No
- 5. Li and O

PROPERTIES OF IONIC COMPOUNDS

1. They are crystalline solids at room temperature.


- Crystals are any substance with a regular, repeating pattern.
- Highly organized
- Hard, rigid

IONIC PROPERTIES CONTINUED...

- 2. generally have high melting points.
- 3. can conduct an electric current when dissolved in water.
- 4. Strong: Would require lots of energy to break them.

WRITING AND NAMING IONIC COMPOUNDS

Chemical formulas show the <u>kinds</u> and <u>numbers</u> of atoms in a substance.

Formula: lowest whole-number ratio of ionic compound.

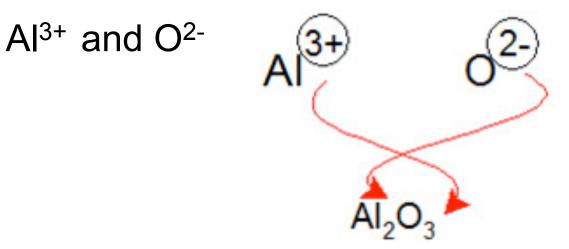
Ex: formula Mg and Cl

a. Write the element w/ is charge (oxidation #)

• <u>Mg+2</u>, Cl-

b. Make sure charges add up to zero!

+2 -1 -1 = 0


c. Write formula using <u>subscripts</u>...need 1 Mg and 2 Cl...

• so <u>MgCl₂</u>

NAMING... MgCl₂

- 1. Cation names stays the same, listed 1st
- 2. Anion name 2nd, ends in –ide
- Ex: Magnesium Chloride

Criss cross "Trick" for formula writing

PRACTICE: WRITE THE FORMULA AND NAME THE BINARY COMPOUND

- 1. Al with Br
- 2. Ca with O
- 3. Ga with S
- 4. K with Se

- 1. AlBr₃ Aluminum Bromide
- 2. CaO Calcium Oxide
- 3. Ga_2S_3 Gallium Sulfide
- 4. K₂Se Potassium Selenide

- 5. Be with F
- 6. Li with I

	1																	18
1	1A 1 Hydrogen	2						_					13	14	15	16	17	8A 2 He Helium
	1.01	2A					K	ley					3A	4A	5A	6A	7A	4.00
2	3 Li Lithium 6.94	4 Be Baryllium 9.01		11 Atomic number 5 6 Na Element symbol Boron Cart Sodium Element name 10.81 12.0											7 N Nitrogen 14.01	8 Oxygen 16.00	9 F Fluorine 19.00	10 Neon 20.18
	11 Na	12 Mg	1			22.96	Ave	erage ator	nic mass*				13 Al	14 Si	15 P	16 S	17 CI	18 Ar
3	Sodium 22.99	Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Aluminum 26.98	Silicon 28.09	Phosphorus 30.97	Sulfur 32.07	Chlorine 35.45	Argon 39.95
4	19 K Potassium 39,10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47,87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Znc 65,39	31 Ga Gallium 69,72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Selonium 78,96	35 Br Bromine 79.90	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 96.94	43 Tc	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192_22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Saaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									
					58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu

If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

Dysprosium Corium needynium Neodymium Promethium Europium Gadolinium Terbium Holmium Erbium Thulium Ytterbium Lutetium Samarium 140.12 140.91 144.24 (145)150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Bk Cf Es U Np Th Pa Pu Cm Fm Md No Lr Am Thorium Protactinium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mondelevium Nobelium Uranium awrendium 232.04 231.04 238.03 (237)(244)(243)(247)(247)(251)(252)(257)(258)(259)(262)

AI with Br
 Ca with O
 Ga with S
 K with Se

1. $AIBr_3$ Aluminum Bromide2. CaOCalcium Oxide3. Ga_2S_3 Gallium Sulfide4. K_2Se Potassium Selenide

POLYATOMIC IONS:

composed of more than one type of element but carry a single charge.

Have "special" names...see chart pg 226 for names and charges

Polyatomic ions:

		Positive ions	14		
1+ ion: Ammoniu	m NH4 ¹	+ Hydro	nium H ₃	O ⁺	
		Negative ions			
1- ions		2- ioi		3- io	
Acetate	$C_2H_3O_2^{1-}$	Carbonate	CO3 ²⁻	Phosphate	PO4 ³⁻
Chlorate	ClO_3^{1-}	Chromate	CrO_4^{2-}		
Chlorite	ClO_2^{1-}	Dichromate	$Cr_2O_7^{2-}$		
Cyanide	CN^{1-}	Hydrogen	HPO4 ²⁻		
		Phosphate			
Dihydrogen Phosphate	$H_2PO_4^{1-}$	Peroxide	$O_2^{2^-}$		
Hydrogen Carbonate	HCO_3^{1-}	Sulfate	SO_4^{2-}		
Hydrogen Sulfate	HSO41-	Sulfite	O_2^{2-} SO_4^{2-} SO_3^{2-} $S_2O_3^{2-}$		
Hydroxide	OH^{1-}	Thiosulfate	$S_2O_3^{2-}$		
Hypochlorite	ClO ¹⁻				
Nitrate	NO_3^{1-}				
Nitrite	NO_2^{1-}				
Perchlorate	ClO_4^{1-}				
Permanganate	MnO_4^{1-}				
Thiocyanate	SCN ¹⁻				

WRITING FORMULAS WITH POLYATOMIC IONS

Remember:

- Criss cross rule still applies
- You may need to use parenthesis

Practice

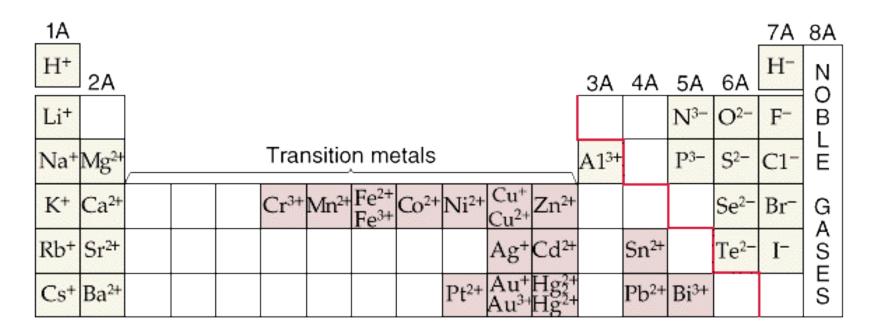
Sodium Chlorate
 Calcium Phosphate
 MgCO₃
 Al(OH)₃

Common	Poly	yatomic	lons
--------	------	---------	------

Answers:

- 1. NaCIO₃
- 2. Ca₃ (PO₄)₂
- 3. Magnesium Carbonate
 4. Aluminum Hydroxide

	Common Pory	raco
C2H3O2	acetate	OF
NH4 ⁺	ammonium	C1
со ₃ 2-	carbonate	NC
C103_	chlorate	NC
C102 ⁻	chlorite	C2
Cr04 ²⁻	chromate	Cl
CN ⁻	cyanide	Mr
Cr ₂ 07 ²⁻	dichromate	РО


OH_	hydroxide
C10 ⁻	hypochlorite
N03	nitrate
N02 ⁻	nitrite
C ₂ O ₄ ²⁻	oxalate
C104 ⁻	perchlorate
Mn04	permanganate
P04 ³⁻	phosphate

IONS OF TRANSITION METALS (B GROUP, D-BLOCK)

Transition metals will form <u>cations</u> and lose e-, but may have more than one possible charge

example:

- Lead—lead <u>II</u>: Pb⁺², lead IV: Pb⁺⁴
- Cobalt—cobalt II: Co⁺², cobalt III: <u>Co⁺³</u>

WRITING FORMULAS WITH TRANSITION METALS

<u>Roman</u> numerals used to represent the charge of the cation.

Example: Iron (II) Oxide FeO Lead (IV) Nitride • Pb_3N_4 **Practice: Copper (II) Chloride** • CuCl₂ **Mercury (I) Sulfide** • Hg₂S

When the name is said, the number is said as well. example: Iron (II) Oxide is read as "Iron <u>Two</u> Oxide"

CrO

Chromium (II) Oxide

 Cr_2O_3

Chromium (III) Oxide

All of these would be <u>IONIC</u> compounds!! WHY??

	1 1A																	18 8A
1	1 H Hydrogen 1.01	2 2A					ĸ	(ey					13 3A	14 4A	15 5A	16 6A	17 7A	2 He Halium 4.00
2	3 Li Lithium 6.94	4 Be Baryllium 9.01		11 Atomic number 5 6 7 8 Na Element symbol Boron Carbon Nitrogen Oxygen Sodium Element name 10.81 12.01 14.01 16.00											O Oxygen	9 F Fluorine 19.00	10 Neon 20.18	
3	11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B		erage ator 8	nic mass* 9 —_88—	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
4	19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Selonium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Saaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									
					58	59	60	61	62	63	64	65	66	67	68	69	70	71
					~	0			02	-	<u> </u>		5		50	-	10	.

If this number is in parentheses, then It refers to the atomic mass of the most stable isotope.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium		Neodymium			Europium	Gadolinium		Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mondolevium	Nobelium	Lawrencium
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

CrO

- Chromium (II) Oxide
- Cr₂O₃
 - Chromium (III) Oxide

Warm Up:

- 1. Name the following:
 - a. LiCl b. K₃PO₄ c. SnF₂

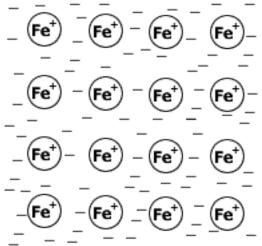
2. Write the formula:

- a. Magnesium Chloride
- **b. Sodium Nitrite**
- c. Iron (III) Oxide

	1 1A																	18 8A
1	1 H Hydrogen 1.01	2 2A					к	(ey					13 3A	14 4A	15 5A	16 6A	17 7A	2 He Halium 4.00
2	3 Li Lithium 6.94	4 Be Beryllium 9.01				11- Na Sodiur	Ele	mic numb ment sym ment nam	bol				5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Neon 20.18
3	11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7 7B	erage ator 8	nic mass* 9 —8B—	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
4	19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Soandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Znc 65.39	31 Ga Galium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selonium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 96.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tallurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Casium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Leed 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									

SUMMARY OF NAMING

- Formula must balance our to a charge of 0.
- Cation first, anion 2nd, ending in *ide*
- If polyatomic, use name/formula from chart on pg 226, use parenthesis as needed
- If transition metal, use roman numeral to show charge


Ex:

- $MgCl_2$ = Magnesium Chloride
- $Ca(NO_2)_2$ = Sodium Nitrite
- $SnFl_2 = Tin(II)$ Fluoride

METALLIC BONDS

Can 2 metals "bond"?

- Not really
- They become a "sea of electrons"
- Attraction between the sea of e- lost by metals and positive cation that they form, which "hold" it together

PROPERTIES OF METALS (REVIEW)

High Melting points High boiling points

Malleable

Ductile

Durable

Conduct heat

Conduct electricity

Hard and Strong

- The <u>more</u> valence e-, the greater the hardness
- Alkali metals are <u>soft</u>

ALLOYS:

mixtures of 2 or more elements, at least one of which is a metal.

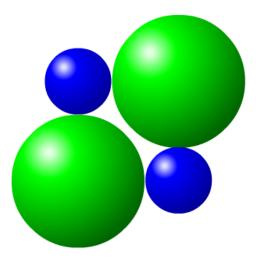
- Most metals are not used in <u>pure</u> form
- Alloy properties are often <u>superior</u>
 - Increased hardess, durability, easier to work with, corrosion resistant

Examples:

- <u>Brass</u>—Cu + Zn
- Sterling silver (Ag + Cu), bronze (Cu + Sn)
- <u>Steel</u>—iron + a whole lot of other stuff
 - <u>le</u> carbon + boron + chromium + manganese + molybdenum + nickel + tungsten + vanadium

STILL CONFUSED?

Progress: 17/27


"Don't mind if I do."

ionic bonding and shapes: this is a great online tutorial about ionic bonding

http://www.pbslearningmedia.org/resource/ lsps07.sci.phys.matter.ionicbonding/ionic-bonding/

Tutorial - Ionic Bonding

The positive ions will attract any negative ions around them, just as the negative ions will attract any positive ions nearby.

CAN YOU NAMES THESE...

BeC_2O_4

- Beryllium Oxalate
 K₃PO₄
- Potassium Phosphate
 Pb₂ (SO₃) 4

Lead (IV) Sulfite
 Cu(MnO₄)₂

 Copper (II) Permanganate LiCN

- Lithium Cyanide $NH_4C_2H_3O_2$
- Ammonium Acetate Since all of these are made of a <u>+</u> cation with a <u>-</u> polyatomic ion,
 - these are all <u>IONIC</u> compounds.

Polyatomic ions:

		<i></i>	Positive ions			<i>6</i>
1+ ion: A	mmonium	NH41	+ Hydroi	nium I	H_3O^+	
_			Negative ions	·	- 22	
	1- ions		2- ion		3.	- ions
Acetate	C_2	$H_{3}O_{2}^{1}$	Carbonate	CO_{3}^{2}	Phosphate	PO43-
Chlorate		O_3^{1-}	Chromate	$\operatorname{CrO_4^{2-}}$		
Chlorite	Cl	O_2^{1-}	Dichromate	$Cr_2O_7^{2-}$		
Cyanide	Cl	N ¹⁻	Hydrogen	HPO_4^{2-}		
			Phosphate			
Dihydrogen Ph	nosphate H ₂	PO_4^{1-}	Peroxide	O_2^{2-}		
Hydrogen Carl		CO_{3}^{1-}	Sulfate	SO_4^{2-}		
Hydrogen Sulf		SO4 ¹⁻	Sulfite	O_2^{2-} SO_4^{2-} SO_3^{2-} $S_2O_3^{2-}$		
Hydroxide		H^{1-}	Thiosulfate	$S_2O_3^{2-}$		
Hypochlorite	Cl	0^{1-}				
Nitrate		O_3^{1-}				
Nitrite		O_2^{1-}				
Perchlorate		O_4^{1-}				
Permanganate		nO_4^{1-}				
Thiocyanate	SC	$\mathbb{C}N^{1-}$		9		14

- **1. What is a ionic bond?**
- 2. Why do elements bond?
- 3. What are some types of bond other than ionic?

The goal of all Chemical Bonds: Elements bond to have a full outer shell like noble gases.

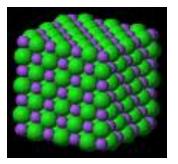
ACIDS: MORE EXCEPTIONS

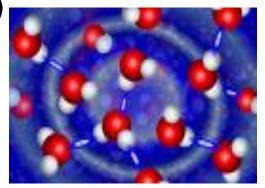
Acids are named differently: table on pg 230

TABLE 5	Common Binary Aci	ds and Oxyacids	
HF	hydrofluoric acid	HNO ₂	nitrous acid
HCI	hydrochloric acid	HNO ₃	nitric acid
HBr	hydrobromic acid	H ₂ SO ₃	sulfurous acid
HI	hydriodic acid	H ₂ SO ₄	sulfuric acid
H ₃ PO ₄	phosphoric acid	СН3СООН	acetic acid

HCIO	hypochlorous acid
HClO ₂	chlorous acid
HClO ₃	chloric acid
HCIO ₄	perchloric acid
H ₂ CO ₃	carbonic acid

NATURE OF COVALENT BONDING


<u>Octet</u> rule STILL applies for covalent bonding.


- e- will be shared to total 8 around the central atom
- Can form multiple bonds between the same elements to get to 8 valence:
- Types of covalent bonds:
- Single bonds: when a single pair of e- is shared.
- **Double Bond: 2 pairs of e- are shared**
- Triple Bond: 3 pairs of e- are shared

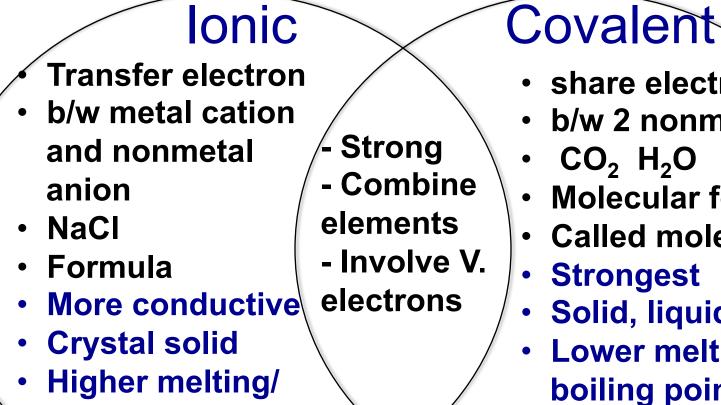
IONIC VS. COVALENT BONDS

Observe the structure of NaCl vs. Water (H₂O)

What can you infer about their properties?

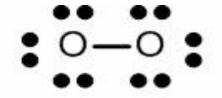
Bonding will determine its physical properties

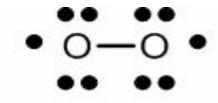
- State of matter at room temp.
 - <u>Covalent</u> compounds can be solids or liquids or gases
 - <u>lonic</u> compounds are all solids
- Melting and boiling points
 - Tend to be lower for <u>covalent</u> compounds
- Electrical Conductivity
 - Ionic > covalent

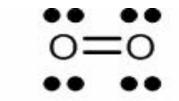

WARM UP

- Identify the following as ion or covalent Then name/ write formulas for each?
- 1. SF₆
- **2.** CuCl₂
- 3. Magnesium Nitride
- 4. Carbon disulfide
- 5. Draw a diagram comparing ionic and covalent bonds.

WARM UP

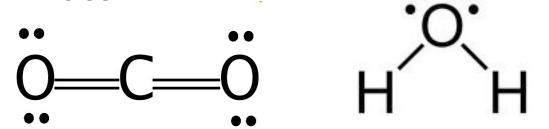

boiling point

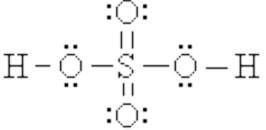

Compare and contrast ionic and covalent bonds. Use a diagram.



- share electron
- b/w 2 nonmetals
 - $CO_2 H_2O$
- Molecular formula
- Called molecules
- Strongest
- Solid, liquid, gas
- Lower melting/ **boiling point**

USING DOT STRUCTURES TO SHOW COVALENT BONDS




Wrong, this has too many electrons!

Wrong, no octet

Correct. Double bond obeys the octet rule.

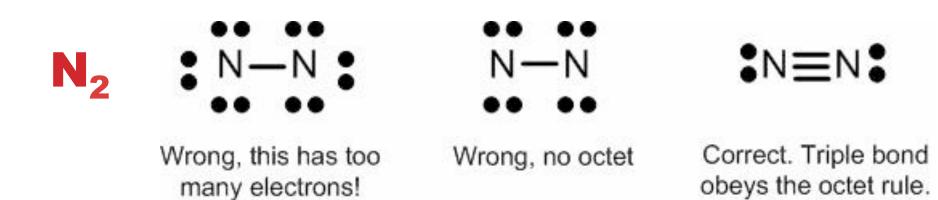
- Dash= shared e⁻ = 2 electrons
- Dot: unshared e-
- Need a total of 8 electrons around each atom

sulphuric acid

REMEMBER...

- Remember, H and He are exceptions, they can have just <u>2 dots</u>
 H:Br: or H-Br:
 ex: HBr
- If you run out of dots, you might need to make a double or triple bond.
 - Double bonds: atoms share TWO PAIRS of electrons. (4 electrons total)
 - Triple Bonds: atoms share THREE pairs of electrons. (6 electrons total)

ex: CO₂


<u>ю</u>—С—Ö

HOW TO DRAW LEWIS DOT STRUCTURES

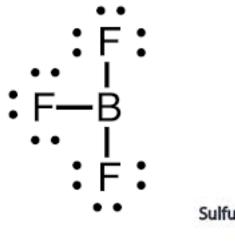
- 1. Determine the number of valence electrons for each atom by using the periodic table.
- 2. Calculate the total number of valence e-

Be sure to multiply the number of valence electrons if there is more than one atom of the element in a compound

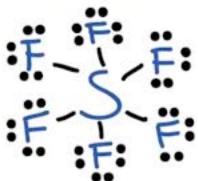
- 3. Determine a central atom and connect all other atoms with lines to each other
- 4. Add lines and dots as needed till all e- are used, with each element having a full outer shell

What order do I write the symbols in for a molecule?

- a. Generally the first element in the formula goes in the center.
- b. Good rule of thumb the least electronegative element goes in the center.
- c. Some elements <u>NEVER</u> go in the center (like: H, halogens)

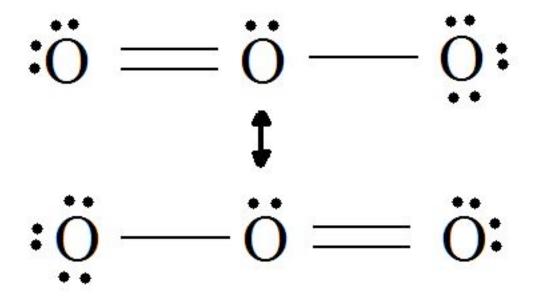


EXCEPTIONS TO THE OCTET RULE

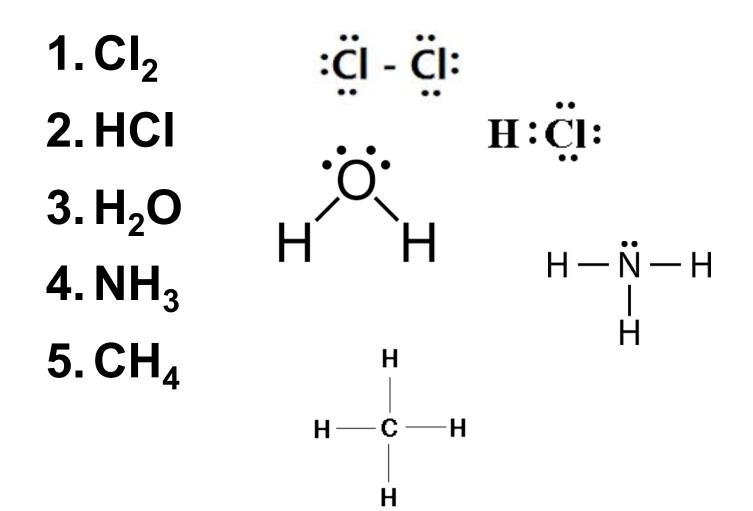

There are molecules that exist, are STABLE, but their e- dot structures cannot be made to satisfy the Octet rule.

Some have less than 8 e- and some have more

 BF₃ has less than 8
 PCl₅ and SF₆ have more Ones with MORE are called EXPANDED Octet

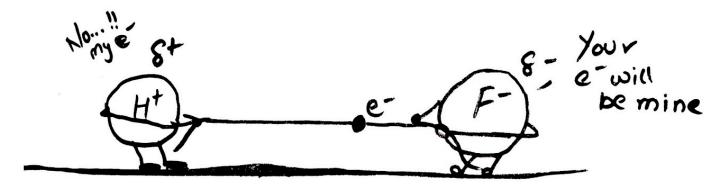


Sulfur Hexafluoride



Resonance: when there is more than one correct way to write a Lewis dot structure.

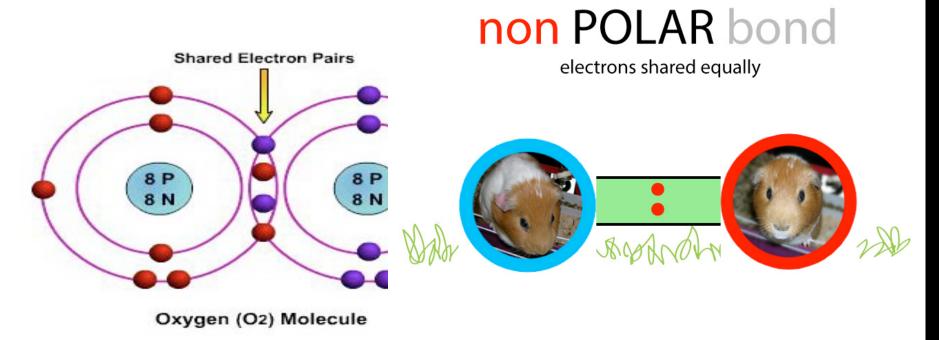
Example: O_3


MORE PRACTICE: DRAW DOT STRUCTURES FOR THESE

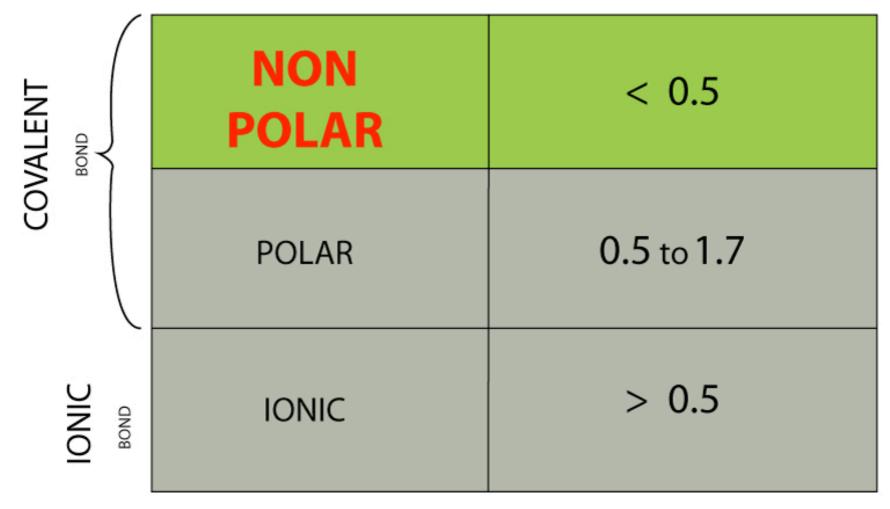
BOND POLARITY

Atoms participating in covalent bonds share electrons, but they do not always share equally.

Remember: <u>Electronegativity</u>: the tendency for an atom to attract electrons to itself when chemically combined with another element.

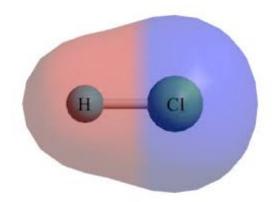

©Amogh Sood

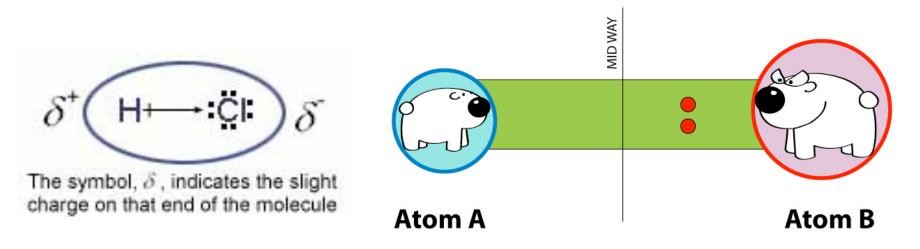
Nonpolar covalent bonds: e⁻ are shared equally Ex: H₂, O₂, N₂

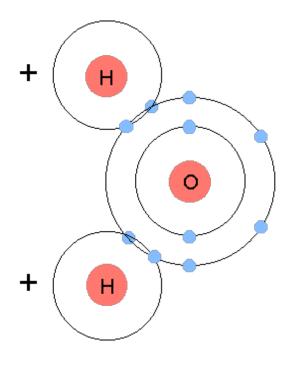

Tend to have symmetric shapes with similar atoms.

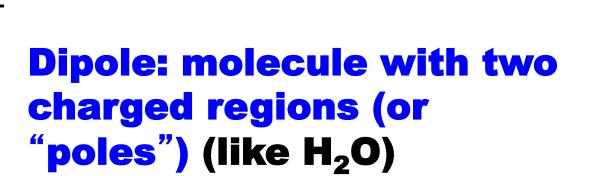
How do we know?

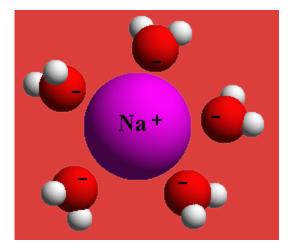
- Think about tug of war...
- Equal electronegativy = share electrons equally = nonpolar bond




You can also compare *difference* in electronegativity to determine types of bonds:

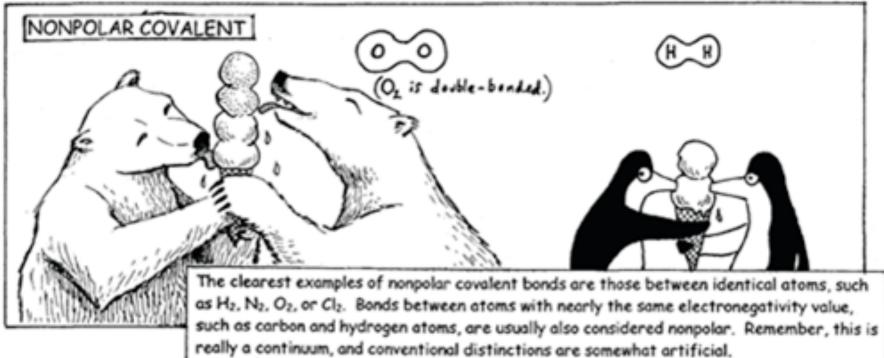

Polar Covalent Bonds: unequal sharing of e⁻


- Tend to be different atoms that lack symmetry
- Have a difference in electronegativity of .4 2
- Ex) HCI
 - H: 2.1
 - CI: 3.0
 - Difference of .9 so polar bond.

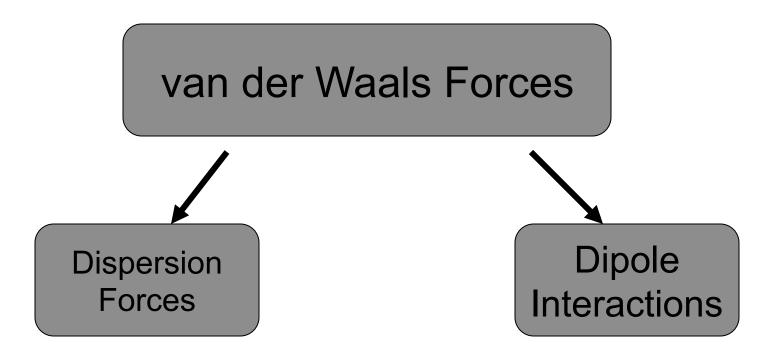


WATER IS POLAR!



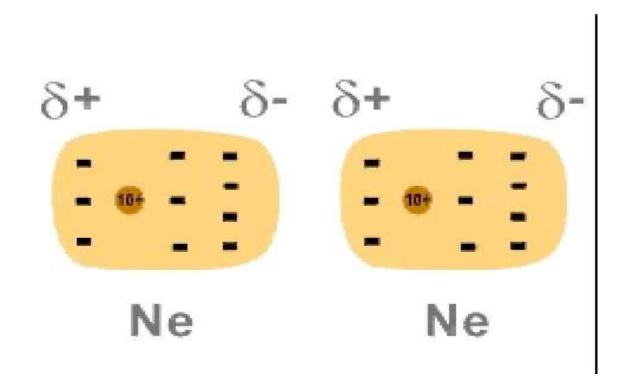


Negative End


Positive End

Intermolecular Forces (IMF): Attractions between MOLECULES

- Occur after forming covalent bonds

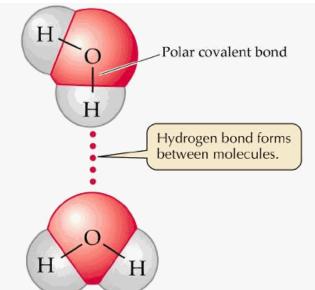

Weakest type of intermolecular interactions

DISPERSION FORCES

Weakest of all IMFs, Caused by motion of electrons

Strength of Dispersion forces increases with increasing size (molecular weight).

Include dipole interaction and hydrogen bonds

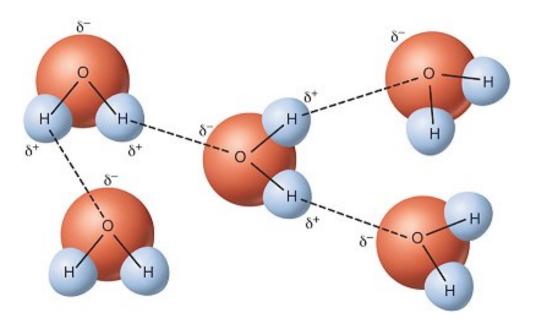


DIPOLE INTERACTIONS Occurs when polar (dipole) molecules are attracted to each other form

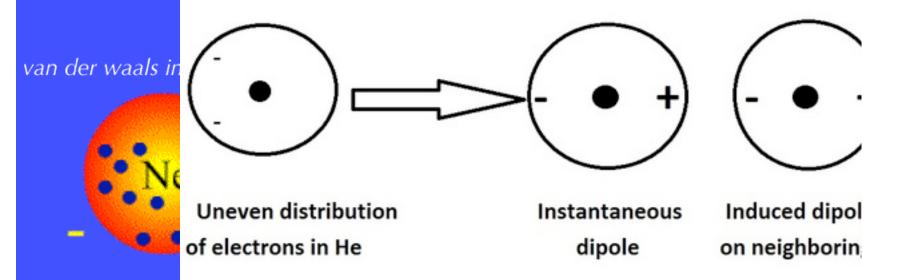
HYDROGEN BONDING

Very strong dipole interaction between H and F, N, or O.

A hydrogen bond is 5% the strength of the average covalent bond

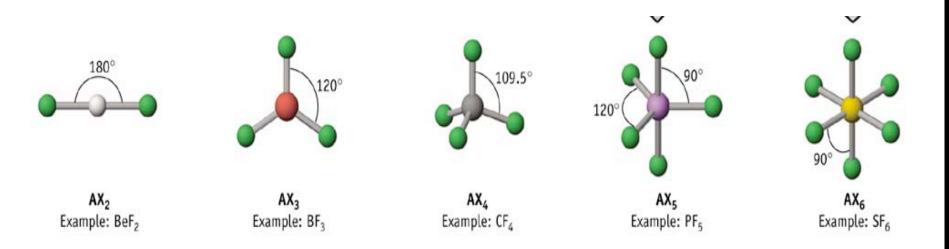

Intermolecular attraction (weak)

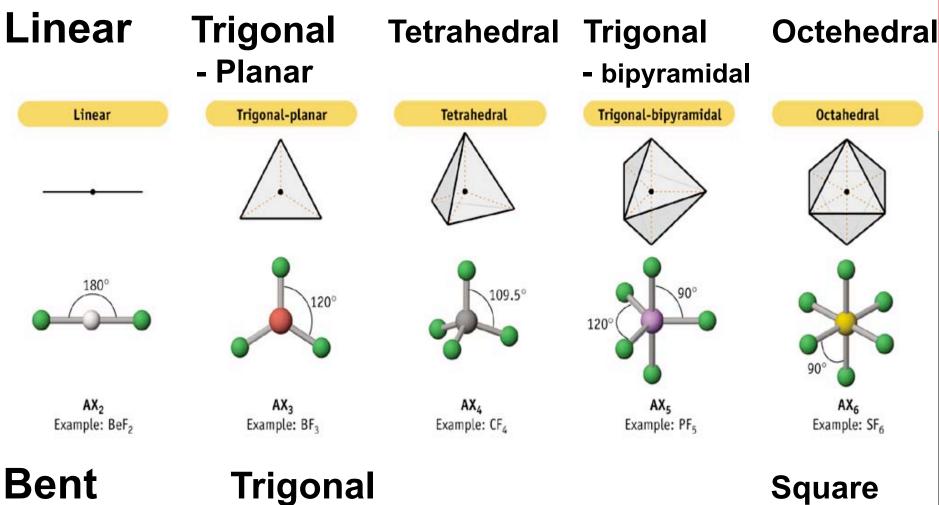
Hydrogen (all dipole forces) form between polar covalent molecules


Cohesion

LONDON DISPERSION/ (VAN DER WAALS INTERACTION)

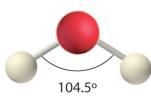
Form from random e⁻ movement causing instantaneous dipoles: weakest bond!

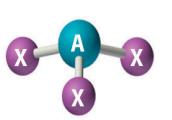

http://besocratic.colorado.edu/CLUE-Chemistry/activities/LondonDispersionForce/1.2interactions-0.html


MOLECULAR GEOMETRY

Dot structure do NOT explain the <u>3D</u> nature of atoms

<u>VSEPR theory</u>: the repulsion between epairs (both shared and lone pairs) drives molecular SHAPE

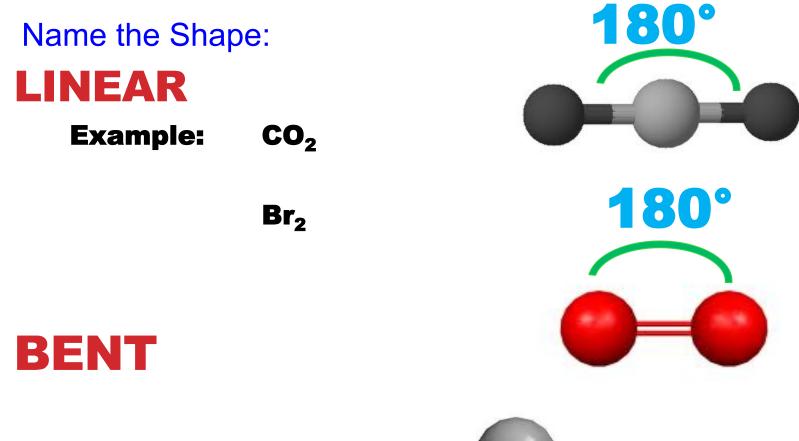

VSEPR= Valence Shell Electron Pair Repulsion



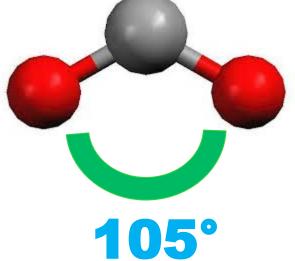
- Planar

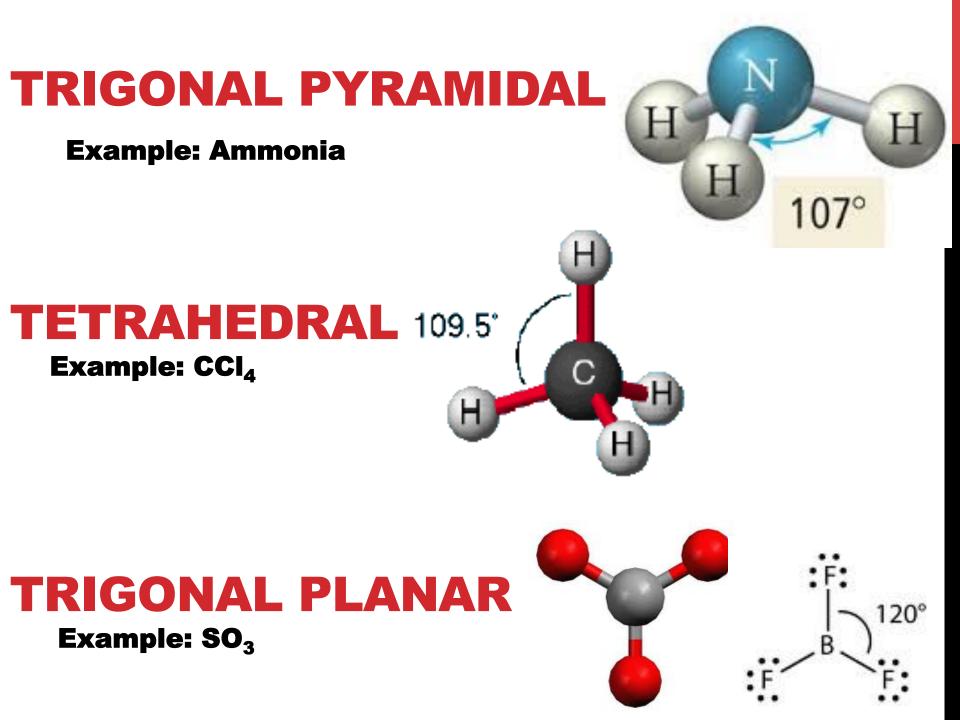
x____x

Trigonal - Pyramidal


Shape (and structural formula example)	# of atoms bonded to central atom	# of unshared pairs of electrons on central atom	Bond angle	Picture	Hybrid Orbital
Linear :Ö=C=Ö:	1 or 2	0	180°		sp
Trigonal Planar :Ci: :Ci: :Ci:	3	0	120°		sp²
Tetrahedral H H-C-H H H	4	0	109.5°	-	sp ^s
Pyramidal H—N—H I H	3	1	107°	~	sp²
Bent H H	2	2	105°	<u> </u>	sp ^z

Small Molecule Shapes

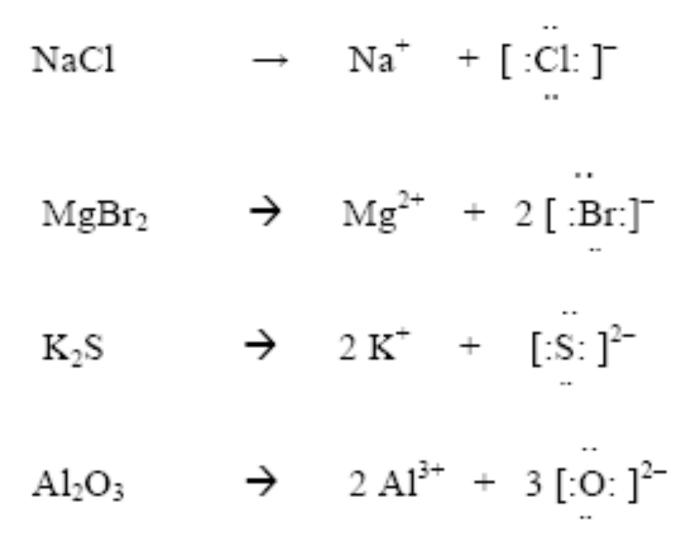

WARM UP


Draw the Lewis dot diagram for:

- 1. NH₃
- **2.** What is the VSEPR shape of H_20
- 3. Write the name of P₃Br₅
- 4. Write the formula for potassium sulfide

Example: Water

LEWIS DOT STRUCTURES FOR IONS

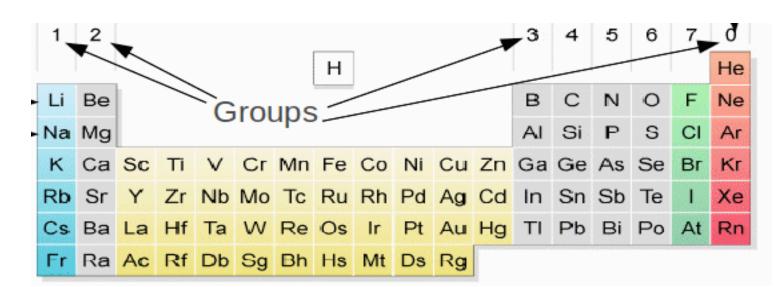

Works almost the same way, BUT

- For each + charge subtract an electron, usually empties the outer shell
- For each charge add an electron, usually fills the outer shell
- Often show number of atoms before the element

Ex) Na+ \rightarrow loses it's one e-, CI- \rightarrow 8 valence electrons,

$$[Na]^+ [:\ddot{Cl}:]^- [Mg]^{2+} [:\ddot{Ql}:]^2$$

Ionic compounds: Lewis structures



OF BOND FORMED

Generally to complete an octet Group 4A will form four bonds, Group 5A will form 3 bonds, Group 6A will form 2 bonds, etc

B: 3 bonds (group 3A)
C: 4 bonds (group 4A)
N: 3 bonds (group 5A)
O: 2 bonds (group 6A)
F, CI, Br, I: 1 bond (group 7A)

- P: 3 or 5
- S: 2 or 6
- Can form expanded octets

WHICH IS WHICH??

 Br_2 , KBr, CH₄, SO₃, N₂H₂, Ne₂

- 1. Which substance does not exist?
- 2. Which one is ionic?
- 3. Which formulas represent molecules?
- 4. Which formulas represent compounds?
- 5. How many atoms are in SO₃?

CLASS PRACTICE

Draw the electron dot structure of the hydroxide ion (OH-).

Draw the electron dot structure of the polyatomic boron tetrafluride anion (BF_4) .

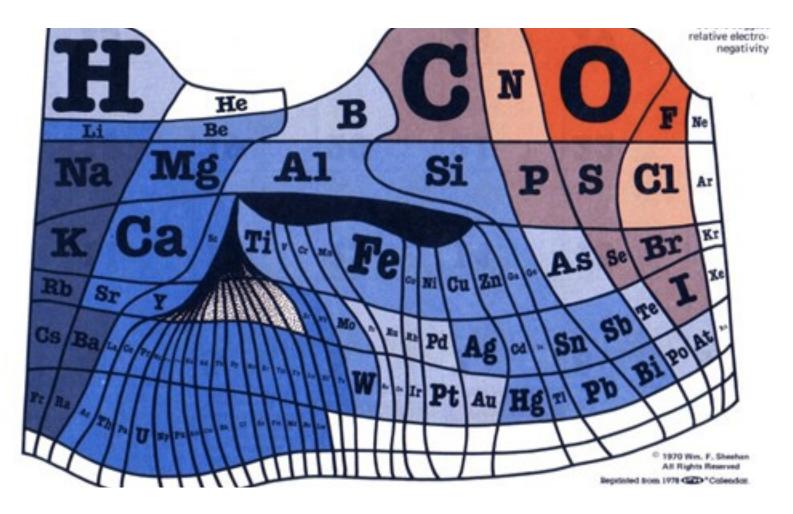
Draw the electron dot structures for sulfate (SO_4^{2-}) and carbonate (CO_3^{2-}) . Sulfur and carbon are the central atoms, respectively.

True or False?

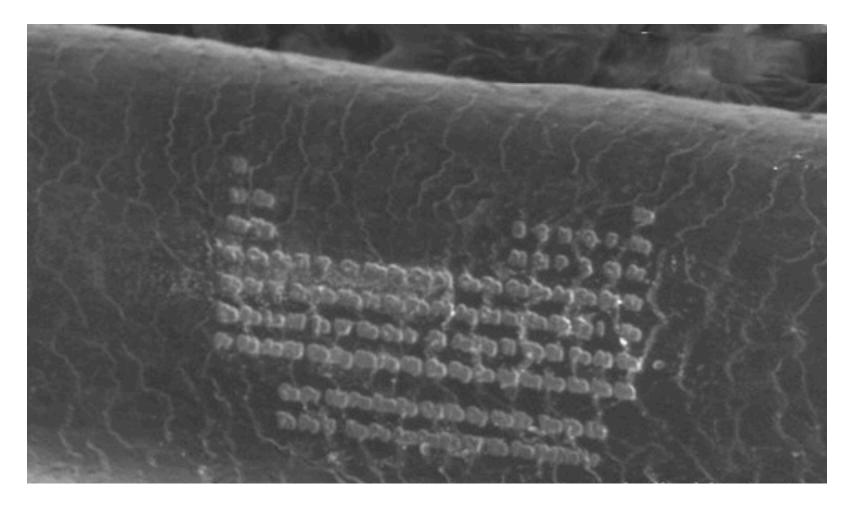
- 1. Molecular is another way to say covalent.
- 2. All molecular compounds are composed of atoms of two or more different elements.

Т

F


Т

Т


F

- 3. No elements exist as molecules.
- 4. Most molecular compounds are composed _F of two or more nonmetallic elements.
- 5. Atoms in covalent compounds share electrons.
- 6. Ionic compounds tend to be composed of 2 metals
- 7. Compare and contrast ionic and covalent bonds. Use a diagram.

ELEMENT ABUNDANCE

SMALLEST PERIODIC TABLE ON A SINGLE HUMAN HAIR

COMMON CORE STANDARDS

- HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
- HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles