Chemistry Reference Tables

Table A Standard Temperature and Pressure

Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K	kelvin degree Celsius

Temperature is a measure of the average kinetic energy. The higher the temperature, the higher the kinetic energy.

This table provides the values for standard temperature and pressure. These values may be needed when working with the combined gas law found on reference table T.

Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Table B Physical Constants for Water

Heat of Fusion	$333.6 \mathrm{~J} / \mathrm{g}$
Heat of Vaporization	$2259 \mathrm{~J} / \mathrm{g}$
Specific Heat Capacity of $\mathrm{H}_{2} \mathrm{O}(\ell)$	$4.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$

These are the values to be used in combination with a heating/cooling curve and the equations for "heat" listed on reference table T. A heating curve represents a substance being heated at a uniform rate while a cooling curve represents a substance cooled at a uniform rate.

Heating Curve

Cooling curve

Equations

Heat of fusion(line BC) Specific Heat Capacity(line CD
$\mathrm{Q}=\mathrm{mH}_{\mathrm{f}}$
$Q=m \mathbf{c} \Delta T$
$\mathrm{Q}=\mathrm{m} \mathrm{H}_{\mathrm{v}}$

Heat of Vaporization(line DE)

Table C Selected Prefixes

Factor	Prefix	Symbol
10^{3}	kilo-	k
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n
10^{-12}	picb-	p

This table contains commonly used metric prefixes. For example;

$$
\begin{array}{ll}
1 \text { kilogram }=1000 \text { grams or } 1 \times 10^{3} \text { grams } & \\
1 \text { centimeter }=1 / 100 \text { meter or } 1 \times 10^{-2} \text { meter } & (1 \text { meter }=100 \text { centimeters }) \\
1 \text { milliliter }=1 / 1000 \text { liter or } 1 \times 10^{-3} \text { liter } & (1 \text { iiter }=1000 \text { milliliters })
\end{array}
$$

The atomic radius is measured in picometers (pm).
Table D Selected Units

Symbol	Name	Quantity
m	meter	length
kg	kilogram	t mass
Pa	pascal	pressure
K	kelvin	temperature
mol	mole	amount of substance
J	joule	energy, work, quantity of heat
s	second	time
L	liter	volume ppm part per million
M	molarity	concentration concentration

This table lists the name and symbol for various units of measurement that have been used throughout the year. When taking the Regents exam, use this chart to recognize any unit that is unfamiliar.

Table E Selected Polyatomic Ions

$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{Hg}_{2}{ }^{2+}$	dimercury (I)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{MnO}_{4}{ }^{-}$	permanganate
$\left.\begin{array}{l} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\ \mathrm{CH}_{3} \mathrm{COO}^{-} \end{array}\right\}$	acetate	$\mathrm{NO}_{2}{ }^{-}$	nitrite
		$\mathrm{NO}_{3}{ }^{-}$	nitrate
CN^{-}	cyanide	$\mathrm{O}_{2}{ }^{2-}$	peroxide
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	OH^{-}	hydroxide
$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate	$\mathrm{PO}_{4}{ }^{3-}$	phosphate
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{\text {- }}$	oxalate	SCN^{-}	thiocyanate
ClO^{-}	hypochlorite	$\mathrm{SO}_{3}{ }^{2-}$	sulfite
$\mathrm{ClO}_{2}{ }^{-}$	chlorite	$\mathrm{SO}_{4}{ }^{2-}$	sulfate
$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate
ClO_{4}^{-}	perchlorate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate

A polyatomic ion is a group of atoms that has a charge. A + sign after the formula of the ion indicates a +1 charge and a - sign after the formula of the ion indicates -1 charge. In a similar way 2 - is the same as a -2 charge.

This chart will be used when writing the formulas or names for compounds containing polyatomic ions. See the examples below.

You can use either form of the acetate ion. Be careful. Some of the ions have very similar formulas and names such as nitrate and nitrite.

Examples:

Name	Formula
Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$
Potassium carbonate	$\mathrm{K}_{2} \mathrm{CO}_{3}$
Aluminum acetate	$\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}$
Sodium phosphate	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
Ammonium chloride	$\mathrm{NH}_{4} \mathrm{Cl}$

Acid/Base ions

Aciadic ion

Hydronium $\mathrm{H}_{3} \mathrm{O}^{+}$

Basic ion

Hydroxide OH^{-}

Table F Solubility Guidelines

NaCl is soluble but AgCl is insoluble $\mathrm{K}_{3} \mathrm{PO}_{4}$ is soluble but CaSO_{4} is insoluble

The table on the right contains ions that form insoluble compounds. The exceptions in this table are those compounds that are soluble in water.

This chart is also used to determine if a double replacement reaction will take place. If one, or both, of the products in a double replacement reaction are insoluble the reaction will take place.

A solucion is a homogeneous mixture. A solution consists of two parts, a solute and a solvent. The solute is the part of the solution that gets dissolved. The solvent is the part that does the dissolving.

The compounds listed on the graph represent the solutes. Water is the solvent.

An example of a solution is

$$
\mathrm{NaC}_{2}^{\prime}(\mathrm{aq}) \quad(\mathrm{aq})=\text { aqueous }
$$

This means water is the solvent.
Remember the phrase "like dissolves like". This means that polar solutes dissolve best in polar solvents, nonpolar solutes in nonpolar solvents.

Thus NH_{3} dissolves well in water since they are both polar. Organic compounds are usually nonpolar and do not dissolve in water.

This table shows the solubility of various compounds in water. The number grams of solute that can dissolve in 100 g of water will depend on the temperature.

Example: How many grams of KCl can dissolve in 100 g of water at $60^{\circ} \mathrm{C}$?
Answer: Start at the bottom of the graph at $60^{\circ} \mathrm{C}$. Move up until you reach the curve for KCl . Then move across to determine the number of grams. The answer is 45 g .
\qquad
Some questions may involve more or less than 100 g of solvent. For these questions, read the graph as described above and then adjust the answer according to the amount of water.

Example: \quad How many grams of NH_{3} can dissolve in 50 g of water at $10^{\circ} \mathrm{C}$?
Answer: $\quad 70$ grams dissolve in 100 g of water. Thus the amount that can dissolve in only 50 grams of water will be half that amount. The answer is 35 .
(If 200 grams of water were present you would double the amount to 140 g .)
The type of solution may also be determined. Any point directly on the curve for a compound will be saturated, any point below a particular curve will be unsaturated, and above the curve is supersaturated.

Most curves show an increase in solubility with an increase in temperature. For solid substances, an increase in temperature results in an increase in solubility. For gases, an increase in temperature results in a decrease in solubility. $\mathrm{SO}_{2}, \mathrm{NH}_{3}$, and HCl are gases.

This graph shows the vapor pressure of four different liquids as a function of temperature. The relationship between temperature and vapor pressure is direct. The higher the temperature of a liquid, the higher the vapor pressure.

The dashed line that cuts across the table represents standard pressure (101.3 kPa). The point at which any of the four curves intersects the dashed line will represent the normal boiling point of the liquid. For example the boiling point of propanone is $56^{\circ} \mathrm{C}$ and the normal boiling point of water is $100^{\circ} \mathrm{C}$.

The relative force of attraction of these four liquids can also be determined. Propanone shows the greatest increase in vapor pressure as temperature increases. Propanone has the weakest force of attraction between molecules. Ethanoic acid shows the least increase in vapor pressure as temperature increase. Ethanoic acid has the strongest force of attraction

Summary Propanone - weakest force of attraction and lowest normal boiling point Ethanoic acid - strongest force of attraction and highest normal boiling point

Table I
Heats of Reaction at 101.3 kPa and 298 K

Reaction	$\Delta H(\mathrm{~kJ})^{*}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	-890.4
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$	-2219.2
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\ell)+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\ell)$	-10943
$2 \mathrm{CH}_{3} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$	-1452
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$	-1367
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell)$	-2804
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$	-566.0
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-3351
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$	+182.6
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	+66.4
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-483.6
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)$	-571.6
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	-91.8
$2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$.	-84.0
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	+52.4
$2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	+227.4
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$	+53.0
$\mathrm{KNO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$	+34.89
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ 路	-44.51
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	+14.78
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	+25.69
$\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	+3.88
$\mathrm{LiBr}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$	-48.83
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$	-55.8

*Minus sign indicates an exothermic reaction.
This table list specific balanced equations and their heat of reaction ($\Delta \mathrm{H})$ values. The heat of reaction is the difference in potential energy between the products and the reactants in an equation. Negative numbers are for exothermic reactions, positive for endothermic. The top 6 equations represent complete combustion. The next 12 are synthesis (combination) reactions. The next six are dissociation (s to aq).

Example: How many kilojoules (kJ) are released when one mole of NH_{3} is produced?
Answer: \quad Since 2 moles of NH_{3} are produced in the equation, divide -91.8 by two. (-45.9)
Example: How many kJ are absorbed when 3 moles of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ are produced?
Answer: \quad One mole is produced in the equation, so multiply the ΔH value by 3. (157.2)
$L i$ is the strongest reducing agent on this chart.
(A reducing agent. gets oxidized.)

Table K
Common Acids

Formula	Name
$\mathrm{HCl}(\mathrm{aq})$	hydrochloric acid
$\mathrm{HNO}_{3}(\mathrm{aq})$	nitric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	sulfuric acid
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$	phosphoric acid
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ or $\mathrm{CO}_{2}(\mathrm{aq})$	carbonic acid
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ or $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$	ethanoic acid
(acetic acid)	

The top three acids on this chart are strong acids. This means they ionize very well. In other words, they produce hydrogen ions $\left(\mathrm{H}^{+}\right)$in solution. Strong acids are good electrolytes. The bottom three are weak acids. They produce few hydrogen ions and are considered weak electrolytes.

Arrhenius acid - produces hydrogen ions as as the only positive ion in solution

Bronsted - Lowry acid - proton (H^{+}) donor

Table L Cummid Sases

Formula	Name
$\mathrm{NaOH}(\mathrm{aq})$	sodium hydroxide
$\mathrm{KOH}(\mathrm{aq})$	potassium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$	calcium hydroxide
$\mathrm{NH}_{3}(\mathrm{aq})$	aqueous ammonia

The top three bases on this chart are strong bases. This means they are soluble in water and thus dissociate to produce hydroxide $\left(\mathrm{OH}^{-}\right)$in solution. Strong bases are good electrolytes. Aqueous ammonia is a weak base. It produces few hydroxide ions and is considered a weak electrolyte

Arrhenius base - produces hydroxide ions the only negative ion in solution

Bronsted - Lowry base - proton (\mathbf{H}^{+}) acceptor

Table M Common Acid-Base Indicators

An indicator is a substance that can determine the presence of acids and bases through specific color changes. This table lists 6 specific indicators.

Example: methyl orange
At $\mathrm{pH}<3.2$ the color is red At $\mathrm{pH}>4.4$ the color is yellow In the range of 3.2 to 4.4 the color will be a mix of red and yellow. (orange)

Remember:

Phenolphthalein is pink in a base.
Litmus paper is red in an acidic solution and blue in a basic, or alkaline, solution.

Table N Selected Radioisotopes

Carbon - 14 undergoes a beta decay $\left(B^{-}\right)$)

beta particle

Radium-226 undergoes an alpha decay (α)

Iron - 53 undergoes positron emission $\left(\beta^{+}\right)$
${ }_{26}^{53} \mathrm{Fe} \rightarrow{ }_{25} \mathrm{Mnn}^{5}+0{ }^{5}$

* All of the above are examples of natural transmutations.
$\mathrm{ms}=$ milliseconds; $s=$ seconds; $\mathrm{min}=$ minutes;
$h=$ hours; $d=$ days; $y=$ years

The specific isotopes listed on this chart are radioactive. This means they will undergo a spontaneous decay of the nucleus. They decay mode symbol can be looked up on Table \mathbf{O}. All elements with an atomic number greater than 83 will be radioactive.

The half-life is the amount of time required for exactly one half of fie nuclei in a radioactive sample to decay. The shorter the half-life the faster a substance decays. The half-life is not affected by temperature or pressure.

Table $\mathbf{P} \quad$ Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

This chart is used to determine the number of carbon atoms in an organic compound. It is used in combination with tables Q and R . See below.

Table \mathbf{Q} Homologous Series of Hydrocarbons

Name	General Formula	Examples	
		Name	1. Structural Formula
alkanes	$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	ethane	
alkenes	$\mathrm{C}_{n} \mathrm{H}_{2 n}$	ethene	
alkynes	$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$	ethyne	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

$n=$ number of carbon atoms
There are three types of hydrocarbons listed on this table.
Alkanes - contain only single bonds and are saturated compounds
Alkenes - contain one carbon to carbon double bond and are unsaturated compounds
Alkynes - contain one carbon to carbon triple bond and are unsaturated compounds
Sample names and formulas for the first three members of each family:

Methane	CH_{4}	Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$	Propane $\mathrm{C}_{3} \mathrm{H}_{8}$
Ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	Propene $\mathrm{C}_{3} \mathrm{H}_{6}$	Butene $\mathrm{C}_{4} \mathrm{H}_{8}$
Ethyne	$\mathrm{C}_{2} \mathrm{H}_{2}$	Propyne $\mathrm{C}_{3} \mathrm{H}_{4}$	Butyne $\mathrm{C}_{4} \mathrm{H}_{6}$

A homologous series contain compound with similar structures and properties. Each member Differs from the next by a definite increment. For these hydrocarbons they differ by CH 2 .

Table S Properties of Selected Elements

This table lists information for selected elements. Some definitions of terms found on this chart are given below.

Ionization Energy (kJ/mole)

This is the energy required to remove the most loosely bound electron from an atom. The higher the ionization energy, the harder it is to remove an electron. Noble gases have the highest ionization energy within any period.

Electronegativity

This is a measure of the attraction an atom has for electrons in a bond. The higher the electronegativity, the stronger the attraction is for electrons. Fluorine has the highest electronegativity. The halogens have the highest electronegativity within any period. Noble gases have no values for electronegativity.

Atomic Radius (pm)

This is one half the distance between the adjacent nuclei of atoms in the solid phase. It is basically an indication of the size of the atom. Atomic radius increases going down a group and decreases going across a period.

Boiling Point (K)

Boiling occurs when the vapor pressure of the liquid is equal to the air pressure.

Melting Point (K)

This is the same temperature as the freezing point.

Density (g/cm ${ }^{3}$)

Density is defined as mass/volume. Gases have low density since there is a much larger distance between molecules than in either the solid or liquid phase.

Table \mathbf{R} Organic Functional Groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	- F (fluoro-) -Cl (chloro-) -Br (bromo-) - I (iodo-)	$R-X$ (X represents any halogen)	$\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$ 2-chloropropane
alcohol	$-\mathrm{OH}$	R-OH	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 1-propanol
ether	- $\mathrm{O}-$	$R-\mathrm{O}-\mathrm{R}^{\prime}$	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ methyl ethyl ether
aldehyde			
ketone			 2-pentanone
organic acid			 propanoic acid
ester			
amine	$\stackrel{\mathrm{I}}{\mathrm{~N}}-$		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ 1-propanamine
amide			 propanamide

A functional group is an atom or group of atoms that gives an organic compound specific properties. It can be used to identify the class of compound present in a structural or condensed formula.

Sample Compounds - Names and structural formulas

$$
\begin{array}{ccc}
\text { Organic Acid } & \text { methanoic acid } & \text { ethanoic acid } \\
(-\mathrm{COOH}) & \mathrm{O} & H \quad \mathrm{C} \\
0 & H-\mathrm{C}-\mathrm{OH} & \mathrm{H}-\dot{\mathrm{C}}-\stackrel{\mathrm{C}}{ } \mathrm{C}-\mathrm{OH} \\
-\mathrm{C}^{\prime \prime}-\mathrm{OH} & & H
\end{array}
$$

methyl ethanoate

Amine $\quad \underline{\text { methyl amine }}$ (1-methamine)

ethyl amine (1-ethanamine)
$-\mathrm{C}_{1}^{\prime}-\mathrm{N}_{1}$

Amide
11
$C-N-$
ethanamide

$$
\begin{array}{cc}
H & O \\
1 & \text { H } \\
\text { C } & -\mathrm{C} \\
\vdots & -N-H \\
H & H
\end{array}
$$

propanamide

$$
\begin{array}{ccc}
H & H & O \\
H & C \\
C & C & C \\
1 & N & N \\
H & H & H
\end{array}
$$

Amino Acid - contain an acid functional group and an amine functional group The names are not required for amino acids.

$$
\begin{aligned}
& g_{0}^{r o p}\left(\mathrm{NH}_{2}\right)
\end{aligned}
$$

In this reaction hydrogen $\left(\mathrm{H}_{2}\right)$ or a halogen $\left(\mathrm{Br}_{2}\right.$ or $\left.\mathrm{Cl}_{2}\right)$ is added onto an unsaturated compound. Thus you must start with a compound that has a double or triple bond (alkene or alkyne). There is always one product in an addition reaction and two reactants. The product will contain only single bonds and thus is considered saturated.

Sample reaction

1-butene + chlorine \rightarrow 1,2-dichlorobutane

The Cl atoms must go on
the carbons that had the
ane is replaced with a chlorine atom or double
bond
hydrocarbon (alkane) and a diatomic
Sample reaction

$$
\begin{aligned}
& \text { methane }+ \text { chlorine } \rightarrow \text { chloromethane }+\mathrm{HCl} \\
& -\mathrm{C}-\mathrm{Cl}_{2} \rightarrow-\mathrm{C}_{1}^{\prime}-\mathrm{Cl}+\mathrm{HCl}
\end{aligned}
$$

Esterification

This is the reaction used to produce esters. The general equation is
Organic acid + alcohol $\quad \rightarrow$ ester + water

Let's look at a specific reaction.

