Unit 5 (Intro to Chemical Quantities and Reactions) Test Review Sheet

Topic 1: Chemical Quantities

A mole is a unit that describes the quantity of 6.02×10^{23}. A mole is, therefore, a unit of quantity in the same sense that a dozen refers to the quantity of 12 .

Number of			Given number of particles
Particles $=$ Given moles $\times\left(6.02 \times 10^{23}\right)$	or	M	6.02×10^{23}

The molar mass of a substance is the mass, in grams, of 1 mole of that substance. One mole of a substance contains 6.02×10^{23} particles (atoms, molecules, or ions) found in that substance.
For an example, water is composed of water molecules:
One mole of water contains $6.02 \times 10^{23}(602000000000000000000000)$ molecules of water.
The molar mass of water, which is known to be 18 g , is the mass of 6.02×10^{23} molecules of water.
Below are the different variations of molar mass.
Atomic mass specifically refers to the mass of 1 mole of an element.
Formula mass is commonly used when referring to the mass of 1 mole of any substance.
Molecular mass is commonly used when referring to the mass of 1 mole of a molecular substance.
Regardless of the formula, the mass of one mole of a substance is the sum of the mass of all atoms in the formula. You are shown how to determine or calculate molar mass in the set below.

There a few different methods you can use to setup and calculate the formula mass of a given substance. Regardless of the method, the following three steps will be involved.

Step 1: Determine how many of each element is in the formula (Be sure to count correctly)
Step 2: Multiply the number of each element by the rounded atomic mass from Periodic Table
Step 3: Add up the total mass of all the elements in the formula to get the formula mass.

Error in any of result in incorrect formula mass.

Example 1 What is the formulz mass of $\mathrm{Al}(\mathrm{OH})_{3}$?	top left of t Example What is the	element sym ram-formula m	bol on the ss of NaNO_{3}	eriodic Table $4 \mathrm{H}_{2} \mathrm{O} \text { ? }$
Step 1: 1 Al 3 O	Atoms	Atomic Mass,	How Many	Total Mass
Step 2: $1(27)+3(16)+3(1)$ setup	Na	23	1	23 g
Step 3: $27+48+3$	N	14	1	14 g
Formula mass $=78 \mathrm{~g} / \mathrm{mole}$ calculated	H	1	8	8 g
	O	16	7	112 g
	You can also setup with a table like	Form	a mass =	$157 \mathrm{~g} / \mathrm{mol}$

Mole-Mass Relationship

The mass of one mole of a substance is the gram-formula mass of that substance. In other words, 6.02×10^{23} particles (one mole) of a given substance has a mass equal to the calculated gram-formula mass. What if there is more than one mole (more than 6.02×10^{23} particles of that substance)? It makes sense to think that a sample containing more than one mole of a substance (more than 6.02×10^{23} particles) will have a mass that is greater than the calculated gram-formula mass. Likewise, a sample containing less than one mole (fewer than 6.02×10^{23} particles) will have a mass that is less than the calculated gram-formula mass. The equation and examples below show how to calculate the mass of a substance if the number of moles of the substance is given.

What is the number of moles of zinc in a 130.8-gram sample?

Set up and solve using Table Tequation above

Moles =	130.8 g Zn	
	--------------	numerical setup
	$65.4 \mathrm{~g} / \mathrm{mol}$	
Moles =	2.0 moles Zn	

Mass $=$ Given moles x Formula mass

Table T Equation

What is the mass of 0.25 moles of O_{2} ?
Set up and solve using the equation above

| Mass | $=$ moles \times Formula mass of O_{2} | |
| :--- | :--- | :--- | :--- |
| Mass | $=0.25 \times 142$ | numerical setup |
| Mass | $=8.0 \mathbf{g ~ O}_{2}$ | calculated result |

Percent Composition by Mass- Use formula in Reference Table T

Use Reference Table T equation below to calculate percent composition.

To determine percent composition of any element in a formula
Step 1: Determine the total mass of each element in the formula
Step 2: Add up all masses to get the formula mass

Ex: \% comp by mass of Mg in magnesium hydroxide
$\mathrm{Mg} \quad \underline{24 \mathrm{~g}} \times 100 \%=41.4 \%$ $\mathrm{Mg}(\mathrm{OH})_{2} \quad 58 \mathrm{~g}$

Step 3: Divide the mass of the element in question by the formula mass, then multiply by 100

Hydrates are ionic compounds that contain water within their crystalline structures.
Names and formulas of three common hydrates are given below:

$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Calcium chloride dihydrate	(dihydrate means $\mathbf{2} \mathrm{H}_{2} \mathrm{O}$)
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	Magnesium sulfate heptahydrate	(heptahydrate means $\mathbf{7 \mathrm { H } _ { 2 } \mathrm { O } \text {) }}$
$\mathrm{CuSO} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	Copper(II) sulfate pentahydrate	(pentahydrate means $\mathbf{5} \mathrm{H}_{2} \mathrm{O}$)

Gram-formula mass (mass of 1 mole) of a hydrate is due in parts to the mass of the water.
Percent composition of water in a hydrate can be calculated using the equation below.

A particle of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Reminder for Hydrates: $\mathrm{CuSO}_{4} * 5 \mathrm{H}_{2} \mathrm{O}$. The dot does NOT mean multiplication. It mean there are 5 water molecules. The gram formula mass of all the atoms in the hydrate are a

What is the percent composition of water in the hydrate $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$?
Answer: $(90 \mathrm{~g} / 250 \mathrm{~g}) \times 100=36 \%$

Percent Composition of Hydrates from Experimental Data

A hydrate can be heated to remove its water (by evaporation) in a laboratory experiment.
Anhydrous solid is what remains after a hydrate is heated to remove the water. If the masses of the hydrate and anhydrous solids are known, the mass of water that was in the hydrate can be determined. From this mass, the percent of water in the hydrate can be calculated.

Empirical/Molecular Formula

A molecular formula of a substance shows the true composition of a substance. For an example, water has a molecular formula of $\mathrm{H}_{2} \mathrm{O}$. This formula shows the true composition of water. The Molecular mass (mass of 1 mole) of water (18 grams) is the mass calculated from this formula.
The empirical formula of a substance shows atoms in a formula in their lowest ratio.

Name Water	Empirical Formula	Molecular Formula
	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
Glucose	HO	$\mathrm{H}_{2} \mathrm{O}_{2}$
Dinitrogen monoxide	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Caffeine	$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{N}_{2} \mathrm{O}$

*If the Largest common multiple in a molecular formula is 1 (The formula cannot be further reduced), the molecular formula and the empirical formula are the same for that compound.

If the empirical formula and molecular mass of a substance are known, the molecular formula of the substance can be determined by following the steps below.

To determine molecular formula

Step 1: Determine the mass of the empirical formula
Step 2: Determine how many units of the empirical formula
there are by dividing the given molecular mass by the calculated empirical mass from step 1
Step 3: Determine the molecular formula by multiplying each subscript of the empirical formula by step 2 answer.

Example 1

A substance has a molecular mass of 116 g and an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{5}$. What is the molecular formula of this substance?

$$
\begin{aligned}
& \text { Step 1: Mass of } \mathrm{C}_{2} \mathrm{H}_{5}=2 \mathrm{C}+5 \mathrm{H}=2(12)+5(1)=29 \mathrm{~g} \\
& \text { Step 2: } \frac{\text { molecular mass }}{\text { Empirical mass }}=\frac{116 \mathrm{~g}}{-29 \mathrm{~g}}=4 \\
& \text { Step 3: Molecular formula }=4\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=4 \mathrm{C}_{8} \mathrm{H}_{20}
\end{aligned}
$$

Topic 2: Chemical Reactions

Chemical equation uses symbols to show changes in chemical compositions of substances during a chemical change. A chemical reaction is a way by which chemical changes occur.
Reactants are the starting substances that will go through the chemical change.
Reactants are shown to the left of the arrow in equations.
Products are the substances that remain after a change has occurred.
Products are shown to the right of the arrow in equations.
An arrow separates reactants from products, and can be read as "yields" or "produces."
A coefficient is a whole number in front of a substances to show the number of moles of the substance taking part in the reaction. Moles is a unit of quantity used to express amount of a substance.
If a special condition is required for the reaction (i.e. a catalyst, light, heat), it is placed above the yield arrow in the chemical equation
Phases (s), (I), (g), or (aq)- are typically included in the chemical formula for the substances

An example of a chemical equation is shown below.		Products
Reactants	Catalyst, Light, Heat, Etc.	
$\mathrm{Zn}(s)+\underset{\uparrow}{2 \mathrm{HCl}}(a q)$	"Yields" or "Produces"	$\mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$
Coefficient of 2: indicates that Coefficient of 2 or more is alv the substance in equations.	are 2 moles of HCl ritten in front of	Coefficient of 1: Indicates that there is 1 mole of ZnCl_{2}. A coefficient of 1 is never written in front of the substance.

Balancing Chemical Equations

Law of Conservation states that during a chemical reaction neither atoms, mass, charges nor energy are created or destroyed. This means that during a chemical reaction, atoms, mass, charges, and energy are conserved so that their amounts are the same before and after the reaction.
A balanced chemical equation is a way of showing
conservation in chemical reactions.
In the balanced equation below, atoms on the reactant and product sides are counted to show conservation.

| $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ | $\rightarrow 2 \mathrm{NH}_{3}$ |
| :---: | :---: | :---: |
| 2 N | 2 N |
| 6 H | |
| atoms of reactants
 (before reaction) | $=$6 H
 atoms of product
 (after reaction) |

The equation above is balanced because the correct combination of the whole-number coefficients allows the number of atoms on both sides of the equation to be equal. In other words, the substances in the reaction are represented in the correct proportion.
Note: When counting atoms in equations, always multiply the coefficient by the subscript.

Always write out the skeleton equation first, and then

 balance.Ex:
Ammonia gas reacts with oxygen gas to produce gaseous nitrogen monoxide (nitric oxide) and gaseous water.

Skeleton Equation:

$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
First Last
$2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{(\mathrm{g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Adjust the \mathbf{N} on the product side now
$2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathbf{2} \mathrm{NO}_{(\mathrm{g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Since there are $\mathbf{2 0}$ on the reactant side, and 50 on the product side, we can balance them by multiplying the O_{2} on the reactant side by 2.5 , and then multiplying all of the coefficients by 2 .
$\left(2 \mathrm{NH}_{3(\mathrm{~g})}+2.5 \mathrm{O}_{\mathbf{2 (\mathrm { g })}} \rightarrow \mathbf{2 N O}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right) \mathbf{x} \mathbf{2}$
$4 \mathrm{NH}_{3(\mathrm{~g})}+\mathbf{5 O}_{2(\mathrm{~g})} \rightarrow \mathbf{4 N O _ { (\mathrm { g }) }}+\mathbf{6 H _ { 2 }} \mathrm{O}_{(\mathrm{g})}$

Stoichiometry

A chemical equation shows changes that are taking place in a chemical reaction. A balanced chemical equation is a recipe for changing one or more chemical substances to different substances.

Consider the balanced equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow \mathbf{2} \mathrm{NH}_{3}$

This balanced equation reads as a recipe in the following way:
$\mathbf{1}$ mole of nitrogen (N_{2}) is combined (or reacted) with $\mathbf{3}$ moles of hydrogen ($\mathbf{3 H}_{2}$)
to yield (or make) $\mathbf{2}$ moles of ammonia ($2 \mathrm{NH}_{3}$).
A balanced chemical equation shows substances that are reacting and are being produced, as well as mole proportions (or mole ratios) of the substances in the reaction. Since mole ratios of substances in a given reaction is fixed, knowing the mole ratio of the reactants will allow you to make any amounts of the products by combining more or less of the reactants in the same ratio as given in the balanced equation.

To determine mole ratio of substances in an equation:

Step 1: Indicate the coefficients of the substances
Step 2: If the coefficients you indicated are reducible, be sure to reduce them by the Greatest Common Factor (GCF).

In the equation:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

Mole ratios (proportions) of substances in the equation are listed below .

Mole ratio of NH_{3} to O_{2} is $\mathbf{4 : 5}$
Mole ratio of NH_{3} to NO is $\mathbf{1 : 1}$
(reduced from 4:4 by GCF of 4)
Mole ratio of NO to $\mathrm{H}_{2} \mathrm{O}$ is $2: 3$ (reduced from $4: 6$ by GCF of 2)

The example below shows you how to set up and solve mole-to-mole problems

Given the balanced equation below:

$$
\mathbf{2 C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

How many moles of C are needed to react with 12 moles of H_{2} ?

Setup and solve using mole proportion

2 C	$+$		$\rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$	Re-write equation
X		12		Write moles from question
2		3		
X	$=$	12		Setup by writing proportion
3 X	=	24		Cross multiply
X	=	8 mol	s of C	Solve for X (calculated result)

Note- Since scientists often measure the mass of substances in grams, not moles, it is typical to be given the starting mass of a substance in grams, and must first convert to moles before using the mole ratio.

Ex: Given the balanced equation below.
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
If you start the reaction with 8 grams of O_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ can you produce? How many grams of $\mathrm{H}_{2} \mathrm{O}$ is this?

Step 1:

$$
\text { Moles }=\frac{\text { Given Mass }}{\text { Formula mass }}
$$

$\frac{8 g}{32 g / m o l e}=.25$ moles O_{2} reacted

Step 2: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}$

> .25 $\frac{1}{.25}=\frac{2}{x}$
$\mathrm{X}=.5$ moles $\mathrm{H}_{2} \mathrm{O}$ produced

Step 3:

Mass $=$ Given moles \times Formula mass
Table T Equation

.5 moles $\mathrm{H}_{2} \mathrm{O} \times 18 \mathrm{~g} /$ mole $=9$ grams of $\mathrm{H}_{2} \mathrm{O}$ produced

5 Main Types of Reactions

Synthesis reactions always involve two or more substances as reactants. During a synthesis reaction, the reactants combine to form one product.

Decomposition reactions always involve a single substance as a reactant. During a decomposition reaction, the reactant breaks down (or decomposes) into two or more products.

Single replacement reactions likely involve a compound and a free element as reactants. During a single replacement reaction, the free element replaces one of the elements in the compound to form a different compound and a different free element. This reaction occurs spontaneously when the free element reactant is more reactive than the similar element in the compound it is replacing.

Double replacement
reactions usually involve two aqueous solutions. During a double replacement reaction, the ions of the solutions switch with each other.

Combustion reactions typically involve the burning of an organic substance in the presence of oxygen. Water and carbon dioxide are usually the products in most combustion reactions

