Unit 8 (Acids and Bases) Test Review Sheet

Reference Tables Used in This Unit- K, L, M, and T

General Properties

Acids

- 1) Are electrolytes
- 2) Change color of indicators
- 3) React with bases (in neutralization reactions) to produce water and a salt

Bases

Similarities

- 1) Are electrolytes
- 2) Change color of indicators
- 3) React with acids (in neutralization reaction) to produce water and a salt

Differences

- 4) Produce H⁺ as the only positive ion in solutions
- 5) Contain more H^+ than OH^- in solutions
- 6) When added to water, increase H⁺ concentration of the water
- When added to water, decrease OH⁻ concentration of the water
- 8) When added to water, decrease pH
- 9) Have pH less than 7
- 10) Turn litmus red
- 11) Have no effect on phenolphthalein (stays colorless)
- 12) Taste sour
- 13) React with certain metals to produce salt and hydrogen gas

Neutral substances

- 1) Have pH of 7
- 2) Have equal amount of H⁺ and OH⁻ ions

- 4) Produce OH⁻ as the only negative ion in solutions
- 5) Contain more OH⁻ than H⁺ in solutions
- 6) When added to water, decrease H⁺ ion concentration of the water
- When added to water, increase OH⁻ ion concentration of the water
- 8) When added to water, increase pH
- 9) Have pH greater than 7
- 10) Turn litmus blue
- 11) Turn colorless phenolphthalein to pink
- 12) Taste bitter and feel slippery

Acid-Base Theories

Arrhenius Theory

Arrhenius theory defines acids and bases by the ion each can produce in solutions.

Arrhenius Acids

Arrhenius acids are substances that produce H^+ (hydrogen ion, proton) in solutions.

- The H⁺ produced by acids is the only positive ion in acidic solutions.
- Properties of acids (listed in the summary table) are due in parts to the properties of the H⁺ ions they produce.
- \bullet The $H^{\scriptscriptstyle +}$ ions produced by acids usually combine with H_2O to form $H_3O^{\scriptscriptstyle +}$ (hydronium ion).

 H^+ + $H_2O \rightarrow H_3O^+$ hydrogen ion water hydronium ion

Table K: Common Acids

Formula	Name
HCl(aq)	hydrochlorie aeid
$HNO_2(aq)$	nitrous acid
HNO ₃ (aq)	nitric acid
$H_2SO_3(aq)$	sulfurous acid
$H_2SO_4(aq)$	sulfuric acid
$\rm H_{3}PO_{4}(aq)$	phosphoric acid
$H_2CO_3(aq)$ or $CO_2(aq)$	carbonic acid
$\begin{array}{c} \mathrm{CH}_{3}\mathrm{COOH}(\mathrm{aq})\\ \mathrm{or}\\ \mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(\mathrm{aq})\end{array}$	ethanoic acid (acetic acid)

Arrhenius Bases

Arrhenius bases are substances that produce OH- (hydroxide ion) in solutions.

- The OH⁻ produced by bases is the only negative ion in basic solutions.
- Properties of bases (listed in the summary table) are due in parts to the properties of the OH⁻ ions they produce.
- Most bases are ionic compounds.

Table L: Common Bases

Formula	Name
NaOH(aq)	sodium hydroxide
KOH(aq)	potassium hydroxide
Ca(OH) ₂ (aq)	calcium hydroxide
NH ₃ (aq)	aqueous ammonia

Bronsted-Lowry (Alternate) Theory

Brönsted-Lowry Theory is an alternate theory that defines acids and bases by their ability to donate or accept a proton (H^+ or hydrogen ion) in certain reactions.

Brönsted-Lowry acids are substances that can *donate a proton* (H⁺ or hydrogen ion) during a reaction.

Brönsted-Lowry bases are substances that can *accept a proton* (H⁺ or hydrogen ion) during a reaction.

H_2O	+	NH₃	\leftrightarrow	NH_4^+	+	OH -
acid		base		conjugate acid		conjugate base

 H_2O is an acid because it gives up an H^+ and becomes OH- (a base) NH₃ is a base because it accepts the H^+ and becomes NH₄⁺ (an acid)

When Brönsted-Lowry acids and bases react:

Two conjugate acid - base pairs can be determined:

*An **amphiprotic** substance is a substance that can act as either an alternate theory acid or base

 H_2O is an example of a substance that is amphiprotic

Relative Ion Concentration of Acids and Bases

The pH Scale and H⁺ ion concentration

pH is a measure of the hydrogen ion (H^*) or hydronium ion (H_3O^*) concentration of a solution. A pH scale ranges in value from 0 - 14. Acids and bases can be defined by their pH values.

- Acids are substances with pH values less than 7.
- Neutral substances have pH equal to 7.
- Bases are substances with pH values greater than 7.

The strength of an acid or a base can be determined by its pH value: **Strong acids** have very low pH values.

Strong bases have very high pH values.

A typical *pH scale* is shown below. Some common substances are indicated below the scale to show their approximate pH values.

Acid-Base Indicators

You must know how to use the various indicator color changes to predict relative acidity/ basicity of a substance.

Mathematically, ${\bf pH}$ is defined as the –log of ${\rm H^{*}}$ ion concentration of a solution.

pH = -log [H+]	or	[H⁺] =	: 10 -pH
----------------	----	--------	-----------------

pH is, therefore, a measure of how much (concentration of) H^{\star} or $H_{3}O^{\star}$ ion are in a solution.

A calculator is not required to calculate pH if the H⁺ concentration is given as 1×10^{-x} M. The x being a value (between 1 to 14) of a negative exponent.

When the $[H^*]$ or $[H_3O^*]$ of a solution is given in the form of 1 x 10^{-x} M, the **pH** value of the solution = x

Examples are given below.

[H₃O⁺]	pH Value	Type of Solution
1.0 x 10 ⁻² M	2	Acidic
1.0 x 10 ⁻⁸ M	8	Basic

As you know a solution with a pH of 3 is more acidic than a solution with a pH of 4. Since it is the concentration of H^+ ions that determines the pH of the solution, a solution with a pH of 3 has a greater concentration of H^+ ions than a solution with a pH of 4.

The lower the pH, the more H⁺ ions there are in the solution
As [H⁺] in a solution increases, pH of the solution decreases

How much more (or fewer) H⁺ is in one solution in comparison to another solution can be determined if the pH values of the two solutions are known. Because of the mathematical relationship between H⁺ concentration and pH (shown above):

Difference in H⁺ of two solutions = 10 (difference in pH)

That means:

1 value difference in pH = 10 times (fold) difference in [H⁺]

Neutralization Reactions

 Neutralization is a reaction between an acid and a base to produce <i>water</i> and a <i>salt</i>. During neutralization reactions: Equal moles of H⁺ (of the acid) and OH⁻ (of the base) combine to neutralize each other Water and salt are produced The salt formed depends on the acid and the base that reacted 			C ACID BA Step 1: An acid + a base with		G K SALT	WATER.		
General equation: Example reaction equation:	Reactants Acid + Bas H CI + Na O	$P \rightarrow Water$ H \rightarrow H ₂ O	Products + Sa + M	alt VaCi	equal amounts H ⁺ + OH ⁻ combine. Step 2: + The acid + the base break up into both			
$ \begin{array}{ll} \mbox{(hydrochloric acid)} & (\mbox{Sodium hydroxide}) & (\mbox{sodium chloride}) \\ \hline {\it Farmation of water in neutralization} & H^+ & + & OH^- & \rightarrow & H_2O \\ \hline {\it Neutralization reactions are double replacement type reactions.} \\ \hline {\it The water (H_2O) is formed from the H^+ ion of the acid and the OH^- of the base.} \\ \hline {\it The salt (NaCl) is formed from the metal of the base (Na) and the non-hydrogen part of the acid (Cl) \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(NaCl) is formed from the metal of the base (Na) and the non-hydrogen part of the acid (Cl) \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(NaCl) is formed from the metal of the base (Na) and the non-hydrogen part of the acid (Cl) \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & \mbox{(NaCl) } \\ \hline {\it Sodium chloride} & \mbox{(NaCl) } \\ \hline {\it Sodium chloride} & \mbox{(Cl) } \\ \hline {\it Sodium chloride} & (C$				orstive + negative ions Step 3: Opposite charges are attracted to eachother forming the salt 4 water	CI			

Titration

Titration is a method used to quantitatively **determine concentration** of an unknown acid or base *Be able to describe the titration set-up, including the buret measurements

Ex: Titrating an Acid with a Base

5

Titration involves a neutralization reaction between an acid and base

The "end point" is reached when the neutralization is complete and the indicator changes color

The equivalence point is when the $\# H^+$ ions = $\# O H^-$ ions.

The acid or base of known concentration usually is called the Standard Solution

Titration Equation to Solve Problems:

M_A x V_A = M_B x V_B	Use this equation if the mole ratio of H ⁺ (of acid) to OH ⁻ (of base) is 1 : 1. <i>For example:</i>		
Table T Equation	A titration involving HCl and NaOH has $1H^+$: $1OH^-$ ratio.		
#H⁺x M _A x V _A = #OH⁻x M _B x V _B	Use this equation if the mole ratio of H^+ to OH^- <i>is not</i> 1: 1. <i>For examples:</i> A titration involving H_2SO_4 and NaOH has $2H^+$: $1OH^-$ ratio. A titration involving HCl and Ca(OH) ₂ has $1H^+$: $2OH^-$ ratio.		

Concept Task: Be able to solve for an unknown in a neutralization problem using the titration equation.

Example 1

30 mL of 0.6 M HCl solution is neutralized with 90 mL NaOH solution. What is the concentration of the base?

 $M_{A} \times V_{A} = M_{B} \times V_{B}$ $0.6 \times 30 = M_{B} \times 90$ 0.6×30 $= M_{B}$ $0.2 M = M_{B}$ calculated result

Example 2

How many milliliters of 1.5 M H₂SO₄ are needed to exactly neutralize 20 milliliters of a 1.5 M NaOH solution?

#OH⁻ x M_B x V_B $= #H^+ x M_A x$ V۵ 1.5 = 2 x 1.5 x 1 x 20 х VA 1 x 20 1.5 х setup VA = 2 x 1.5 10 mL = VA calculated result